impulsive phase
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 29)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 923 (2) ◽  
pp. 163
Author(s):  
Ross Pallister ◽  
Peter F. Wyper ◽  
David I. Pontin ◽  
C. Richard DeVore ◽  
Federica Chiti

Abstract Magnetic reconnection is widely accepted to be a major contributor to nonthermal particle acceleration in the solar atmosphere. In this paper we investigate particle acceleration during the impulsive phase of a coronal jet, which involves bursty reconnection at a magnetic null point. A test-particle approach is employed, using electromagnetic fields from a magnetohydrodynamic simulation of such a jet. Protons and electrons are found to be accelerated nonthermally both downwards toward the domain’s lower boundary and the solar photosphere, and outwards along the axis of the coronal jet and into the heliosphere. A key finding is that a circular ribbon of particle deposition on the photosphere is predicted, with the protons and electrons concentrated in different parts of the ribbon. Furthermore, the outgoing protons and electrons form two spatially separated beams parallel to the axis of the jet, signatures that may be observable in in-situ observations of the heliosphere.


2021 ◽  
Vol 923 (2) ◽  
pp. 268
Author(s):  
Guannan Gao ◽  
Qiangwei Cai ◽  
Shaojie Guo ◽  
Min Wang

Abstract A GOES M1.9 flare took place in active region AR 11153 on 2011 February 9. With a resolution of 200 kHz and a time cadence of 80 ms, the reverse-drifting (RS) type-III bursts, intermittent sequence of type-U bursts, drifting pulsation structure (DPS), and fine structures were observed by the Yunnan Observatories Solar Radio Spectrometer (YNSRS). Combined information revealed by the multiwavelength data indicated that after the DPS was observed by YNSRS, the generation rate of type-U bursts suddenly increased to 5 times what it had been. In this event, the generation rate of type-U bursts may depend on the magnetic-reconnection rate. Our observations are consistent with previous numerical simulation results. After the first plasmoid produced (plasma instability occurred), the magnetic-reconnection rate suddenly increased by 5 to 8 times. Furthermore, after the DPS, the frequency range of the turnover frequency of type-U bursts was obviously broadened to thrice what it was before, which indicates a fluctuation amplitude of the density in the loop top. Our observations also support numerical simulations during the flare-impulsive phase. Turbulence occurs at the top of the flare loop and the plasmoids can trap nonthermal particles, causing density fluctuation at the loop top. The observations are generally consistent with the results of numerical simulations, helping us to better understand the characteristics of the whole physical process of eruption.


2021 ◽  
Vol 921 (2) ◽  
pp. 179
Author(s):  
Dong Li ◽  
Mingyu Ge ◽  
Marie Dominique ◽  
Haisheng Zhao ◽  
Gang Li ◽  
...  

Abstract Quasi-periodic pulsations (QPPs), which usually appear as temporal pulsations of the total flux, are frequently detected in the light curves of solar/stellar flares. In this study, we present the investigation of nonstationary QPPs with multiple periods during the impulsive phase of a powerful flare on 2017 September 6, which were simultaneously measured by the Hard X-ray Modulation Telescope (Insight-HXMT), as well as the ground-based BLENSW. The multiple periods, detected by applying a wavelet transform and Lomb–Scargle periodogram to the detrended light curves, are found to be ∼20–55 s in the Lyα and mid-ultraviolet Balmer continuum emissions during the flare impulsive phase. Similar QPPs with multiple periods are also found in the hard X-ray emission and low-frequency radio emission. Our observations suggest that the flare QPPs could be related to nonthermal electrons accelerated by the repeated energy release process, i.e., triggering of repetitive magnetic reconnection, while the multiple periods might be modulated by the sausage oscillation of hot plasma loops. For the multiperiodic pulsations, other generation mechanisms could not be completely ruled out.


2021 ◽  
Vol 918 (2) ◽  
pp. 42
Author(s):  
P. Zhang ◽  
W. Wang ◽  
Y. Su ◽  
L. M. Song ◽  
C. K. Li ◽  
...  

2021 ◽  
Vol 507 (3) ◽  
pp. 3936-3951
Author(s):  
Kristopher Cooper ◽  
Iain G Hannah ◽  
Brian W Grefenstette ◽  
Lindsay Glesener ◽  
Säm Krucker ◽  
...  

ABSTRACT We investigate the spatial, temporal, and spectral properties of 10 microflares from AR12721 on 2018 September 9 and 10 observed in X-rays using the Nuclear Spectroscopic Telescope ARray and the Solar Dynamic Observatory’s Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager. We find GOES sub-A class equivalent microflare energies of 1026–1028 erg reaching temperatures up to 10 MK with consistent quiescent or hot active region (AR) core plasma temperatures of 3–4 MK. One microflare (SOL2018-09-09T10:33), with an equivalent GOES class of A0.1, has non-thermal hard X-ray emission during its impulsive phase (of non-thermal power ∼7 × 1024 erg s−1) making it one of the faintest X-ray microflares to have direct evidence for accelerated electrons. In 4 of the 10 microflares, we find that the X-ray time profile matches fainter and more transient sources in the extreme-ultraviolet, highlighting the need for observations sensitive to only the hottest material that reaches temperatures higher than those of the AR core (>5 MK). Evidence for corresponding photospheric magnetic flux cancellation/emergence present at the footpoints of eight microflares is also observed.


2021 ◽  
Vol 85 (8) ◽  
pp. 907-910
Author(s):  
A. B. Struminsky ◽  
I. Yu. Grigorieva ◽  
Yu. I. Logachev ◽  
A. M. Sadovskii
Keyword(s):  

2021 ◽  
Author(s):  
Wenzhi Ruan ◽  
Yuhao Zhou ◽  
Rony Keppens

Abstract All solar flares demonstrate a prolonged, hourlong post-flare (or gradual) phase, characterized by arcade-like, post-flare loops (PFLs) visible in many extreme ultraviolet (EUV) passbands. These coronal loops are filled with hot – ~30MK – and dense plasma, evaporated from the chromosphere during the impulsive phase of the flare, and they very gradually recover to normal coronal density and temperature conditions. During this gradual cooling down to ~1MK regimes, much cooler – ~0.01MK – and denser coronal rain is frequently observed inside PFLs. Understanding PFL dynamics in this long-duration, gradual phase is crucial to the entire corona-chromosphere mass and energy cycle. Here we report the first simulation in which a solar flare evolves from pre-flare, over impulsive phase all the way into its gradual phase, which successfully reproduces post-flare coronal rain. This rain results from catastrophic cooling caused by thermal instability, and we analyse the entire mass and energy budget evolution driving this sudden condensation phenomenon. We find that the runaway cooling and rain formation also induces the appearance of dark post-flare loop systems, as observed in EUV channels. We confirm and augment earlier observational findings, suggesting that thermal conduction and radiative losses alternately dominate the cooling of PFLs. Since reconnection-driven flares occur in many astrophysical settings (stellar flares, accretion disks, galactic winds and jets), our study suggests a new and natural pathway to introduce multi-thermal structuring.


2021 ◽  
Vol 503 (2) ◽  
pp. 2444-2456
Author(s):  
David C L Millar ◽  
Lyndsay Fletcher ◽  
Ryan O Milligan

ABSTRACT Oscillations in the solar atmosphere have long been observed both in quiet conditions and during solar flares. The chromosphere is known for its 3-min signals, which are strong over sunspot umbrae, and have periods determined by the chromosphere’s acoustic cut-off frequency. A small number of observations have shown the chromospheric signals to be affected by energetic events such as solar flares, however the link between flare activity and these oscillations remains unclear. In this work, we present evidence of changes to the oscillatory structure of the chromosphere over a sunspot which occurs during the impulsive phase of an M1 flare. Using imaging data from the CRISP instrument across the H α and Ca ii 8542  Å spectral lines, we employed a method of fitting models to power spectra to produce maps of where there is evidence of oscillatory signals above a red-noise background. Comparing results taken before and after the impulsive phase of the flare, we found that the oscillatory signals taken after the start of the flare differ in two ways: the locations of oscillatory signals had changed and the typical periods of the oscillations had tended to increase (in some cases increasing from <100 s to ∼200 s). Both of these results can be explained by a restructuring of the magnetic field in the chromosphere during the flare activity, which is backed up by images of coronal loops showing clear changes to magnetic connectivity. These results represent one of the many ways that active regions can be affected by solar flares.


2021 ◽  
Author(s):  
Alexander Kosovichev ◽  
Ivan Sharykin

<p>Helioseismic response to solar flares ("sunquakes") occurs due to localized force or/and momentum impacts observed during the flare impulsive phase in the lower atmosphere. Such impacts may be caused by precipitation of high-energy particles, downward shocks, or magnetic Lorentz force. Understanding the mechanism of sunquakes is a key problem of the flare energy release and transport. Our statistical analysis of M-X class flares observed by the Solar Dynamics Observatory during Solar Cycle 24 has shown that contrary to expectations, many relatively weak M-class flares produced strong sunquakes, while for some powerful X-class flares, helioseismic waves were not observed or were weak. The analysis also revealed that there were active regions characterized by the most efficient generation of sunquakes during the solar cycle. We found that the sunquake power correlates with maximal values of the X-ray flux derivative better than with the X-ray class. The sunquake data challenge the current theories of solar flares.</p>


Author(s):  
Sargam M Mulay ◽  
Lyndsay Fletcher

Abstract We have carried out the first comprehensive investigation of enhanced line emission from molecular hydrogen, H2 at 1333.79 Å, observed at flare ribbons in SOL2014-04-18T13:03. The cool H2 emission is known to be fluorescently excited by Si iv 1402.77 Å UV radiation and provides a unique view of the temperature minimum region (TMR). Strong H2 emission was observed when the Si iv 1402.77 Å emission was bright during the flare impulsive phase and gradual decay phase, but it dimmed during the GOES peak. H2 line broadening showed non-thermal speeds in the range 7-18 $\rm {km~s}^{-1}$, possibly corresponding to turbulent plasma flows. Small red (blue) shifts, up to 1.8 (4.9) $\rm {km~s}^{-1}$ were measured. The intensity ratio of Si iv 1393.76 Å and Si iv 1402.77 Å confirmed that plasma was optically thin to Si iv (where the ratio = 2) during the impulsive phase of the flare in locations where strong H2 emission was observed. In contrast, the ratio differs from optically thin value of 2 in parts of ribbons, indicating a role for opacity effects. A strong spatial and temporal correlation between H2 and Si iv emission was evident supporting the notion that fluorescent excitation is responsible.


Sign in / Sign up

Export Citation Format

Share Document