Molecular Characterization of Firework-Related Urban Aerosols using FT-ICR Mass Spectrometry

Author(s):  
Qiaorong Xie ◽  
Pingqing Fu

<p>Firework (FW) emissions have strong impacts on air quality and public health. However, little is known about the molecular composition of FW-related aerosols especially the organic fraction. Here we describe the detailed molecular composition of Beijing aerosols collected before, during, and after a FW event in New Year's Eve evening. Subgroups of CHO, CHNO, CHOS, and CHNOS were characterized using ultrahigh resolution Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry. We found that high molecular weight compounds with relatively low H/C and O/C ratios and high degree of unsaturation were greatly enhanced during the New Year’s Eve, which are likely to be aromatic-like compounds. They plausibly contributed to the formation of brown carbon and affect the light absorption properties of atmospheric aerosols. Moreover, the number concentration of sulfur-containing compounds especially the nitrooxy-organosulfate was increased dramatically by the FW event, suggesting the important effect of nighttime chemistry on their formation. But, the number concentration of CHO and CHON doubled after the event with photooxidation. The co-variation of these subgroups was suggested to be associated with multiple atmospheric aging processes of aerosols including the multiphase redox chemistry driven by NO<sub>x</sub>, O<sub>3</sub>, and <sup>·</sup>OH. Our study provides new insights into the anthropogenic emissions for urban SOA formation.</p>

2020 ◽  
Author(s):  
Qiaorong Xie ◽  
Sihui Su ◽  
Shuang Chen ◽  
Yisheng Xu ◽  
Dong Cao ◽  
...  

Abstract. Firework (FW) emission has strong impacts on air quality and public health. However, little is known about the molecular composition of FW-related airborne particulate matter (PM) especially the organic fraction. Here we describe the detailed molecular composition of Beijing PM collected before, during, and after a FW event in New Year's Eve evening in 2012. Subgroups of CHO, CHNO, and CHOS were characterized using ultrahigh resolution Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry. These subgroups comprise substantial fraction of aromatic-like compounds with low O/C ratio and high degrees of unsaturation, some of which plausibly contributed to the formation of brown carbon in Beijing PM. Moreover, we found that the number concentration of sulfur-containing compounds especially the organosulfates was increased dramatically by the FW event, whereas the number concentration of CHO and CHON doubled after the event. The co-variation of CHO, CHON, and CHOS subgroups was suggested to be associated with multiple atmospheric aging processes of aerosols including the multiphase redox chemistry driven by NOx, O3, and •OH. These findings highlight that FW emissions can lead to a sharp increase of high molecular weight compounds particularly aromatic-like substances in urban PM, which may affect the light absorption properties and adverse health effects of atmospheric aerosols.


2020 ◽  
Vol 20 (11) ◽  
pp. 6803-6820 ◽  
Author(s):  
Qiaorong Xie ◽  
Sihui Su ◽  
Shuang Chen ◽  
Yisheng Xu ◽  
Dong Cao ◽  
...  

Abstract. Firework (FW) emission has strong impacts on air quality and public health. However, little is known about the molecular composition of FW-related airborne particulate matter (PM), especially the organic fraction. Here we describe the detailed molecular composition of Beijing PM collected before, during, and after a FW event in the evening of New Year's Eve in 2012. Subgroups of CHO, CHON, and CHOS were characterized using ultrahigh-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. These subgroups comprise a substantial fraction of aromatic-like compounds with low O∕C ratio and high degrees of unsaturation, some of which plausibly contributed to the formation of brown carbon in Beijing PM. Moreover, we found that the number concentration of sulfur-containing compounds, especially the organosulfates, increased dramatically during the FW event, whereas the number concentration of CHO and CHON doubled after the event, which was associated with multiple atmospheric aging processes including the multiphase redox chemistry driven by NOx, O3, and •OH. These findings highlight that FW emissions can lead to a sharp increase in high-molecular-weight compounds, particularly aromatic-like substances in urban particulate matter, which may affect the light absorption properties and adverse health effects of atmospheric aerosols.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Angelica Bianco ◽  
Laurent Deguillaume ◽  
Nadine Chaumerliac ◽  
Mickaël Vaïtilingom ◽  
Miao Wang ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2019 ◽  
Author(s):  
Min Cui ◽  
Cheng Li ◽  
Yingjun Chen ◽  
Fan Zhang ◽  
Jun Li ◽  
...  

Abstract. The molecular composition and structure of polar organic matters (POM) in particles emitted from various vessels and excavators were characterized using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS). POM was extracted by purified water and was discussed by elemental composition which was divided into three groups, namely CHO, CHON and S-containing compounds (CHONS and CHOS). The results showed that: (i) CHO (accounting for 49 % of total POM relative peak response) was the most abundant group for all tested off-road engines, followed by CHON (33 %) and CHOS (35 %) for diesel- and HFO (heavy fuel oil)-fueled off-road equipment, respectively. (ii) The abundance and structure of the CHON group in water extracts were different in terms of engine type and load. The fraction of relative peak response of CHON was highest for excavator emissions under the working mode compared to other modes (idling and moving). Furthermore, dinitrophenol and methyl dinitrophenol were the most abundant emission species for excavators with high rated speed, while nitronaphthol and methyl nitronaphthol were more important for low rated speed vessels. (iii) The composition and structure of S-containing compounds was directly influenced by fuel oil characteristics (sulfur content and aromatic ring), with much more condensed aromatic rings in S-containing compounds observed for HFO-fueled vessels, while more abundant aliphatic chains were observed in emissions from diesel equipment. Overall, higher fractions of condensed hydrocarbons and aromatic rings in POM emitted from vessels using HFO caused strong optical absorption capacity. And different structures existing in POM could provide a direction to qualitative and quantities the exact organic compounds as tracers to distinguish the emission from diesel or HFO- fueled off-road engines.


Sign in / Sign up

Export Citation Format

Share Document