New seismological insights from the analyses of historical and recent earthquakes at Ischia Island (Southern Italy)

Author(s):  
Stefano Carlino ◽  
Vincenzo Convertito ◽  
Anna Tramelli ◽  
Vincenzo De Novellis ◽  
Nicola Alessandro Pino

<p>We report here a first comparative analysis between recent and historical earthquakes, occurred in the island of Ischia (Southern Italy), which produced heavy damages and thousands of fatalities. The island of Ischia is located in the Gulf of Naples, and represents a peculiar case of resurgent caldera in which volcano-tectonic earthquakes, with low magnitude, have generated large damages and catastrophic effects, as is the case for the 4 March 1881 (I<sub>max</sub>8-9 MCS) and the 28 July 1883 (I<sub>max</sub>10-11 MCS) events. Both the earthquakes struck the northern area of the island, similarly to the recent 21 August 2017 earthquake. The results allowed us to assess the location, as well as the possible dimension and the related maximum magnitude of the seismogenic structure, located in the northern sector of the island, and responsible of damaging earthquakes. Our results also provide an additional framework to interpret mechanisms leading to earthquakes associated with dynamics of calderas.</p><p> </p>

Author(s):  
Stefano Carlino ◽  
Nicola Alessandro Pino ◽  
Anna Tramelli ◽  
Vincenzo De Novellis ◽  
Vincenzo Convertito

AbstractThe island of Ischia, located in the Gulf of Naples, represents an unusual case of resurgent caldera where small-to-moderate magnitude volcano-tectonic earthquakes generate large damage and catastrophic effects, as in the case of 4 March 1881 (Imax-VIII-IXMCS) and 28 July 1883 (Imax X-XI MCS) historical earthquakes, and of the recent 21 August 2017 MW = 3.9, event. All these earthquakes struck the northern area of the island. With about 65,000 inhabitants, Ischia is a popular touristic destination for thermals baths, hosting more than 3,000,000 visitors per year, thus representing a high seismic risk area. Assessing its seismic potential appears a fundamental goal and, to this end, the estimate of the magnitude of significant historical events and the characterization of their source are crucial. We report here a reassessment of historical data of damage of 1881 and 1883 earthquakes to evaluate the main source parameters of these events (obtained with the BOXER and EXISM software) and quantitatively compare, for the first time, the results with the source characteristics, obtained from instrumental data, of the recent 2017 earthquake. The results allowed us to assess the location, as well as the possible dimension and the related maximum magnitude, of the seismogenic structure responsible for such damaging earthquakes. Our results also provide an additional framework to define the mechanisms leading to earthquakes associated with the dynamics of calderas.


1997 ◽  
Vol 24 (1-4) ◽  
pp. 67-86 ◽  
Author(s):  
Alessandro Maria Michetti ◽  
Luca Ferreli ◽  
Leonello Serva ◽  
Eutizio Vittori

2021 ◽  
Author(s):  
Shaogang Wei ◽  
Xiwei Xu ◽  
Tuo Shen ◽  
Xiaoqiong Lei

<p>The Capital Circle (CC) is a region with high risk of great damaging earthquake hazards. In our present study, by using a subset of rigorously GPS data around the North China Plain (NCP), med-small recent earthquakes data and focal mechanism of high earthquakes data covering its surrounding regions, the following major conclusions have been reached: (a) Driven by the deformation force associated with both eastward and westward motion, with respect to the NCP, of the rigid South China and the rigid Amurian block, widespread sinistral shear appear over the NCP, which results in clusters of parallel NNE-trending faults with predominant right-lateral strike-slips via bookshelf faulting within the interior of the NCP. (b) Fault plane solutions of recent earthquakes show that tectonic stress field in the NCP demonstrate overwhelming NE-ENE direction of the maximum horizontal principal stress, and that almost all great historical earthquakes in the NCP occurred along the NWW-trending Zhangjiakou-Bohai seismic belt and the NNE-trending Tangshan-Hejian-Cixian seismic belt. Additionally, We propose a simple conceptual model for inter-seismic deformation associated with the Capital Circle, which might suggest that two seismic gaps are located on the middle part of Tangshan-Hejian-Cixian fault seismic belt (Tianjin-Hejian segment) and the northeast part of Tanlu seismic belt (Anqiu segment), and constitute as, in our opinion, high risk areas prone to great earthquakes.</p>


2005 ◽  
Vol 343 (1-3) ◽  
pp. 83-95 ◽  
Author(s):  
Barbara Naso ◽  
Daniele Perrone ◽  
Maria Carmela Ferrante ◽  
Marcella Bilancione ◽  
Antonia Lucisano

2018 ◽  
Vol 6 (4) ◽  
pp. 365-380 ◽  
Author(s):  
Luca Appolloni ◽  
Roberto Sandulli ◽  
Carlo Nike Bianchi ◽  
Giovanni Fulvio Russo

2011 ◽  
Vol 182 (4) ◽  
pp. 367-379 ◽  
Author(s):  
Nicola Alessandro Pino

AbstractSeismic hazard assessment relies on the knowledge of the source characteristics of past earthquakes. Unfortunately, seismic waveform analysis, representing the most powerful tool for the investigation of earthquake source parameters, is only possible for events occurred in the last 100–120 years, i.e., since seismographs with known response function were developed. Nevertheless, during this time significant earthquakes have been recorded by such instruments and today, also thanks to technological progress, these data can be recovered and analysed by means of modern techniques.In this paper, aiming at giving a general sketch of possible analyses and attainable results in historical seismogram studies, I briefly describe the major difficulties in processing the original waveforms and present a review of the results that I obtained from previous seismogram analysis of selected significant historical earthquakes occurred during the first decades of the XXth century, including (A) the December 28, 1908, Messina straits (southern Italy), (B) the June 11, 1909, Lambesc (southern France) – both of which are the strongest ever recorded instrumentally in their respective countries –and (C) the July 13, 1930, Irpinia (southern Italy) events. For these earthquakes, the major achievements are represented by the assessment of the seismic moment (A, B, C), the geometry and kinematics of faulting (B, C), the fault length and an approximate slip distribution (A, C). The source characteristics of the studied events have also been interpreted in the frame of the tectonic environment active in the respective region of interest. In spite of the difficulties inherent to the investigation of old seismic data, these results demonstrate the invaluable and irreplaceable role of historical seismogram analysis in defining the local seismogenic potential and, ultimately, for assessing the seismic hazard. The retrieved information is crucial in areas where important civil engineering works are planned, as in the case of the single-span bridge to be built across the Messina straits and the ITER nuclear fusion power plant to be built in Cadarache, close to the location of the Lambesc event, and in regions characterized by high seismic risk, such as southern Apennines.


Sign in / Sign up

Export Citation Format

Share Document