differential uplift
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 17)

H-INDEX

22
(FIVE YEARS 1)

Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1252
Author(s):  
Jan Barmuta ◽  
Krzysztof Starzec ◽  
Wojciech Schnabel

Based on the interpretation of 2D seismic profiles integrated with surface geological investigations, a mechanism responsible for the formation of a large scale normal fault zone has been proposed. The fault, here referred to as the Rycerka Fault, has a predominantly normal dip-slip component with the detachment surface located at the base of Carpathian units. The fault developed due to the formation of an anticlinal stack within the Dukla Unit overlain by the Magura Units. Stacking of a relatively narrow duplex led to the growth of a dome-like culmination in the lower unit, i.e., the Dukla Unit, and, as a consequence of differential uplift of the unit above and outside the duplex, the upper unit (the Magura Unit) was subjected to stretching. This process invoked normal faulting along the lateral culmination wall and was facilitated by the regional, syn-thrusting arc–parallel extension. Horizontal movement along the fault plane is a result of tear faulting accommodating a varied rate of advancement of Carpathian units. The time of the fault formation is not well constrained; however, based on superposition criterion, the syn -thrusting origin is anticipated.


Geology ◽  
2021 ◽  
Author(s):  
Jason W. Ricketts ◽  
Jacoup Roiz ◽  
Karl E. Karlstrom ◽  
Matthew T. Heizler ◽  
William R. Guenthner ◽  
...  

The Great Unconformity of the Rocky Mountain region (western North America), where Precambrian crystalline basement is nonconformably overlain by Phanerozoic strata, represents the removal of as much as 1.5 b.y. of rock record during 10-km-scale basement exhumation. We evaluate the timing of exhumation of basement rocks at five locations by combining geologic data with multiple thermochronometers. 40Ar/39Ar K-feldspar multi-diffusion domain (MDD) modeling indicates regional multi-stage basement cooling from 275 to 150 °C occurred at 1250–1100 Ma and/or 1000–700 Ma. Zircon (U-Th)/He (ZHe) dates from the Rocky Mountains range from 20 to 864 Ma, and independent forward modeling of ZHe data is also most consistent with multi-stage cooling. ZHe inverse models at five locations, combined with K-feldspar MDD and sample-specific geochronologic and/or thermochronologic constraints, document multiple pulses of basement cooling from 250 °C to surface temperatures with a major regional basement exhumation event 1300–900 Ma, limited cooling in some samples during the 770–570 Ma breakup of Rodinia and/or the 717–635 Ma snowball Earth, and ca. 300 Ma Ancestral Rocky Mountains cooling. These data argue for a tectonic control on basement exhumation leading up to formation of the Precambrian-Cambrian Great Unconformity and document the formation of composite erosional surfaces developed by faulting and differential uplift.


2021 ◽  
Vol 9 (3) ◽  
pp. 463-485
Author(s):  
Saptarshi Dey ◽  
Rasmus C. Thiede ◽  
Arindam Biswas ◽  
Naveen Chauhan ◽  
Pritha Chakravarti ◽  
...  

Abstract. The Lesser Himalaya exposed in the Kishtwar Window (KW) of the Kashmir Himalaya exhibits rapid rock uplift and exhumation (∼3 mm yr−1) at least since the late Miocene. However, it has remained unclear if it is still actively deforming. Here, we combine new field, morphometric and structural analyses with dating of geomorphic markers to discuss the spatial pattern of deformation across the window. We found two steep stream segments, one at the core and the other along the western margin of the KW, which strongly suggest ongoing differential uplift and may possibly be linked to either crustal ramps on the Main Himalayan Thrust (MHT) or active surface-breaking faults. High bedrock incision rates (>3 mm yr−1) on Holocene–Pleistocene timescales are deduced from dated strath terraces along the deeply incised Chenab River valley. In contrast, farther downstream on the hanging wall of the MCT, fluvial bedrock incision rates are lower (<0.8 mm yr−1) and are in the range of long-term exhumation rates. Bedrock incision rates largely correlate with previously published thermochronologic data. In summary, our study highlights a structural and tectonic control on landscape evolution over millennial timescales in the Himalaya.


Author(s):  
Ben Surpless ◽  
Sarah Thorne

Normal faults are commonly segmented along strike, with segments that localize strain and influence propagation of slip during earthquakes. Although the geometry of segments can be constrained by fault mapping, it is challenging to determine seismically relevant segments along a fault zone. Because slip histories, geometries, and strengths of linkages between normal fault segments fundamentally control the propagation of rupture during earthquakes, and differences in segment slip rates result in differential uplift of adjacent footwalls, we used along-strike changes in footwall morphology to detect fault segments and the relative strength of the mechanical links between them. We applied a new geomorphic analysis protocol to the Wassuk Range fault, Nevada, within the actively deforming Walker Lane. The protocol examines characteristics of footwall morphology, including range-crest continuity, bedrock-channel long profiles, catchment area variability, and footwall relief, to detect changes in strike-parallel footwall characteristics. Results revealed six domains with significant differences in morphology that we used to identify seismically relevant fault segments and segment boundaries. We integrated our results with previous studies to determine relative strength of links between the six segments, informing seismic hazard assessment. When combined with recent geodetic studies, our results have implications for the future evolution of the Walker Lane, suggesting changes in the accommodation of strain across the region. Our analysis demonstrates the power of this method to efficiently detect along-strike changes in footwall morphology related to fault behavior, permitting future researchers to perform reconnaissance assessment of normal fault segmentation worldwide.


2021 ◽  
Author(s):  
Andreas Eberts ◽  
Hamed Fazlikhani ◽  
Wolfgang Bauer ◽  
Harald Stollhofen ◽  
Helga de Wall ◽  
...  

Abstract. The exposed Variscan basement in Central Europe is well-known for its complex structural and lithological architecture resulting from multiple deformation phases. We study the southwestern margin of the Bohemian Massif, which is characterized by major and long-lived shear zones, such as the Pfahl and Danube shear zones, extending over > 100 km and initiated during Variscan tectonics. We integrate Bouguer gravity anomaly and LiDAR topographic data analyses and combine our results with available data and observations from low-temperature thermochronology, metamorphic grades, and granite intrusion depths to detect patterns of basement block segmentation and differential uplift. Three NW-SE striking basement blocks are bordered by the Runding, Pfahl, and Danube shear zones from the northeast to the southwest. Basement block boundaries are indicated by abrupt changes in measured gravity patterns and metamorphic grades. By applying high-pass filters to gravity data in combination with lineament analysis, we identified a new NNW-SSE striking tectonic structure (Cham Fault), which further segments known basement blocks. Basement blocks that are segmented by the Cham Fault differ in the abundance and spatial distribution of exposed late Variscan granites and are further characterized by variations of apparent thermochronological age data. Based on our observations and analyses, a differential uplift and tectonic tilt model is proposed to explain the juxtaposition of different crustal levels exposed at the surface. Block segmentation along the NW-SE striking Pfahl and Runding shear zones most likely occurred prior, during, and after late-orogenic granite emplacement at ca. 320 ± 10 Ma, as some of the granites are cross-cut by the shear zones while others utilized these structures during magma ascent and emplacement. In contrast, activity and block segmentation along the Cham Fault occurred after granite emplacement as the fault sharply truncates the granite inventory. Our study provides evidence for intense and continuous fault activity during late and early post-orogenic times and highlights the importance of tectonic structures in the juxtaposition of different crustal levels and the creation of complex lithological patterns in orogenic terrains.


2021 ◽  
Author(s):  
Patrick Wu ◽  
Tanghua Li ◽  
Holger Steffen

&lt;p&gt;Glacial Isostatic Adjustment (GIA) induced by the melting of the Pleistocene Ice Sheets causes differential land uplift, relative sea level and geoid changes. Thus, GIA in North America may affect water flow-accumulation and the rate of sedimentation and erosion in the South Saskatchewan River Basin (SSRB), but so far this has not been well investigated.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Our aim here is to use surface topography in the SSRB and simple models of surface water flow to compute flow-accumulation, wetness index, stream power index and sediment transport index - the latter two affect the rates of erosion and sedimentation. Since the river basin became virtually ice-free around 8 ka BP, we shall study the effects of GIA induced differential land uplift during the last 8 ka on these indexes.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Using the present-day surface topography ETOPO1 model, we see that the stream power index and sediment transport index&amp;#160;in the SSRB may not be high enough to alter the surface topography significantly today and probably during the last 8 ka except for places around the Rocky Mountains. The effect of using 1 and 3 arc minute grid resolution of the ETOPO1 model does not significantly alter the value of these indexes. However, we note that using 1 arc minute grid is much more computationally intensive, so only a smaller area of the SSRB can be included in the computation.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;Next, we assume that sedimentation and erosion did not occur in the SSRB during the last 8 ka BP, and the change in surface topography is only due to GIA induced differential uplift. We use land uplift predicted by a large number of GIA models to study the changes in stream power &amp; sediment transport indexes in the last 8 ka BP. Our base GIA model is ICE6G_C(VM5a). Then we investigate the effects of using uplift predicted by other GIA models that can still fit the observed relative sea level (RSL), uplift rate and gravity-rate-of-change data in North America reasonably well. These alternate GIA models have lateral heterogeneity in the mantle and lithosphere included &amp;#8211; in particular we test those that give the largest differential uplift in the SSRB. We found that the effect of these other GIA earth models is not large on the stream power &amp; sediment transport indexes. Finally, we investigate the sensitivity of these indexes on the ice models that are consistent with GIA observations. The results of this study will be useful to our understanding of water flow accumulation, sedimentation and erosion in the past, present and future and for water resource management in North America.&lt;/p&gt;


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 100
Author(s):  
Piotr Migoń ◽  
Milena Różycka

This paper explores problems associated with explanation of geoheritage at the landscape scale and argues that focus on individual geosites that show rock outcrops or small-scale landforms may not be sufficient to tell the story. The area of Orlické–Bystrzyckie Mountains Block in Central Europe lacks spectacular landforms or large rock outcrops, and yet has a most interesting geological history that involved Mesozoic planation, Cretaceous marine transgression and the origin of sedimentary cover, Cenozoic differential uplift and the origin of tectonic topography, resultant fluvial incision and Quaternary periglaciation. Individual geosites documented in the area fail to show this complexity and give an incomplete picture. Therefore, viewpoint geosites, allowing for in situ interpretation of regional landscapes, have a role to play and they collectively illustrate the effects of the main stages of geological and geomorphological evolution. In addition, the potential of simple visualization technologies is investigated, as these 3D visualizations may enhance ground views, putting things into even broader perspective.


2021 ◽  
Vol 8 ◽  
Author(s):  
María Teresa Ramírez-Herrera ◽  
Krzysztof Gaidzik ◽  
Steven L. Forman

Uplift is the predominant factor controlling fluvial systems in tectonically deforming regions. Mountains along subduction zones force incision, aggradation, or sinuosity modifications, showing differential uplift and variations in erosion rates, in river incision, and in channel gradient produced by ongoing tectonic deformation. Thus, landscape can provide information on the tectonic activity of a defined region. Here, field studies, analysis of geomorphic indices using a digital elevation model, and dating of river terraces were undertaken to extract the following: (1) determine rates of ongoing tectonic deformation, (2) identify evidence of active faulting, and (3) explain the possible relation of ongoing differential uplift in the topography of the overriding plate with the geometry and roughness effects of subducting slab along the Mexican subduction within the Guerrero sector. Landscape analysis using geomorphic indices suggests segmentation along stream of the studied Tecpan River basin. Rates of tectonic uplift were derived from river incision rates computed with the combination of strath terrace heights and associated dating. Tectonic uplift rates vary from ∼1 ± 0.3 mm/yr up to ∼5 ± 0.6 mm/yr during the Holocene, consistent with inferred high tectonic activity in this zone. These results vary significantly spatially, i.e., increasing upstream. Possible explanations for spatial variations of tectonic uplift rates are most likely related to an effect of the geometry and the rugged seafloor of the oceanic Cocos plate subduction beneath a faulted continental lithosphere.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3180
Author(s):  
Anthony Mémin ◽  
Jean-François Ghienne ◽  
Jacques Hinderer ◽  
Claude Roquin ◽  
Mathieu Schuster

Lake Chad, the largest freshwater lake of north-central Africa and one of the largest lakes of Africa, is the relict of a giant Quaternary lake (i.e., Megalake Chad) that developed during the early- to mid-Holocene African Humid Period. Over the drylands of the Sahara Desert and the semi-arid Sahel region, remote sensing (optical satellite imagery and digital elevation models) proved a successful approach to identify the paleo-shorelines of this giant paleo-lake. Here we present the first attempt to estimate the isostatic response of the lithosphere due to Megalake Chad and its impact on the elevation of these paleo-shorelines. For this purpose, we use the open source TABOO software (University of Urbino, Italy) and test four different Earth models, considering different parameters for the lithosphere and the upper mantle, and the spatial distribution of the water mass. We make the simplification of an instantaneous drying-up of Megalake Chad, and compute the readjustment related to this instant unload. Results (i.e., duration, amplitude, and location of the deformation) are then discussed in the light of four key areas of the basin displaying prominent paleo-shoreline morpho-sedimentary features. Whatever the Earth model and simplification involved in the simulations, this work provides a strong first-order evaluation of the impact on hydro-isostasy of Megalake Chad. It demonstrates that a water body similar to this megalake would induce a significant deformation of the lithosphere in the form of a vertical differential uplift at basin-scale reaching up to 16 m in the deepest part of the paleo-lake, and its shorelines would then be deflected from 2 m (southern shorelines) to 12 m (northern shorelines), with a maximum rate of more than 1 cm y−1. As such, any future study related to the paleo-shorelines of Megalake Chad, should integrate such temporal and spatial variation of their elevations.


2020 ◽  
pp. 2150003 ◽  
Author(s):  
Maqbool Yousuf ◽  
Kaiser Bukhari

This study discusses the composition and distribution of paleo-liquefaction structures, their triggering mechanisms, probable source and the dynamics of source faults expressed in the Kashmir basin (KB), NW Himalaya. Stratigraphic evidences of deformational structures along concomitant fault zones are highly preserved throughout the basin. The KB was frequently confronted with recurrent seismic activities along intra basinal active faults and adjacent active faults during differential uplift of Himalaya, which resulted in various deformation structures during and after the evolution of the KB. Past earthquake events released a significant part of the slip deficit along intra basinal active faults and vertically offset quaternary deposits by 1–3[Formula: see text]m and originated different and extensively deformation structures. In this context, stratigraphic sections and paleo-surface ruptures have been meticulously mapped to determine the seismic nature and the source of resultant causative earthquakes. The results of this study suggest that besides southern thrust systems, intrabasinal active faults are the main probable seismogenic sources responsible for development of these structures and play an important role in releasing the accumulated stresses in this region.


Sign in / Sign up

Export Citation Format

Share Document