Integrated Cretaceous–Cenozoic plate tectonics and structural geology in southern Mexico

2020 ◽  
pp. SP504-2020-70
Author(s):  
Rod Graham ◽  
James Pindell ◽  
Diego Villagómez ◽  
Roberto Molina-Garza ◽  
James Granath ◽  
...  

AbstractThe structural evolution of southern Mexico is described in the context of its plate tectonic evolution and illustrated by two restored crustal scale cross-sections through Cuicateco and the Veracruz Basin and a third across Chiapas. We interpret the Late Jurassic–Early Cretaceous opening of an oblique hyper-stretched intra-arc basin between the Cuicateco Belt and Oaxaca Block of southern Mexico where Lower Cretaceous deep-water sediments accumulated. These rocks, together with the hyper-stretched basement beneath them and the Oaxaca Block originally west of them, were thrust onto the Cretaceous platform of the Cuicateco region during a Late Cretaceous–Eocene orogenic event. The mylonitic complex of the Sierra de Juárez represents this hyper-stretched basement, perhaps itself an extensional allochthon. The Chiapas fold-and-thrust belt is mainly Neogene in age. Shallowing of the subduction angle of the Cocos Plate in the wake of the Chortis Block, suggested by seismicity and migrating arc volcanism, is thought to play an important role in the development of the Chiapas fold-and-thrust belt itself, helping to explain the structural dilemma of a vertical transcurrent plate boundary fault (the Tonalá Fault) at the back of an essentially dip-slip fold-and-thrust belt.

2020 ◽  
Author(s):  
Alexander Razmadze

<p>Gare Kakheti foothills are located between Lesser Caucasus and Kakheti Ridge and are mainly represented by the series of NEN dipping thrust faults, most of which are associated with fault‐related folds. Gare Kakheti foothills as a part of the Kura foreland fold-and-thrust belt developed formerly as a foreland basin (Oligocene-Lower Miocene) (e.g. Alania et al., 2017). Neogene shallow marine and continental sediments in the Gare Kakheti foothills keep the record on the stratigraphy and structural evolution of the study area during the compressive deformation. Interpreted seismic profiles and structural cross-sections across the Udabno, Tsitsmatiani, and Berebisseri synclines show that they are thrust-top basins. Seismic reflection data reveal the presence of growth fault-propagation folds and some structural wedges (or duplex). The evolution of the Udabno, Tsitsmatiani, and Berebisseri basins is compared with simple models of thrust-top basins whose development is controlled by the kinematics of competing for growth anticlines. Growth anticlines are mainly represented by fault-propagation folds. The geometry of growth strata in associated footwall synclines and the sedimentary infill of thrust-top basins provide information on the thrusting activity in terms of location, geometry, and age.<br>This work was supported by Shota Rustaveli National Science Foundation (SRNSF - #PHDF-19-268).</p><p> </p>


2020 ◽  
Author(s):  
Marc Schori ◽  
Anna Sommaruga ◽  
Jon Mosar

<p>The Jura Mountains are a thin-skinned fold-and-thrust belt (FTB) in the northern foreland of the European Alps, extending over northern and western Switzerland and eastern France. The Jura FTB was detached in Triassic evaporites during Late Miocene and Pliocene compression. Prior to this, the pre-Mesozoic basement was intensely pre-structured by inherited faults that had been reactivated under changing stress fields during the Mesozoic and Cenozoic structural evolution of continental Europe. In order to understand the connection between thin-skinned FTB formation and pre-existing basement structures, we compiled boreholes and geological cross-sections across the Northern Alpine Foreland and derived elevation, thickness and erosion models of defined Mesozoic units and the top of the pre-Mesozoic basement.</p><p>Our models confirm the presence of basement faults concealed underneath the detached cover of the Jura Mountains. The pre-Mesozoic basement shows differences in structural altitudes resulting from partially overlapping lithospheric processes. They include graben formation during evolution of the European Cenozoic Rift System (ECRIS), flexural subsidence during Alpine forebulge development and lithospheric long-wavelength buckle folding. Faults in connection with these processes follow structural trends that suggest the reactivation of inherited Variscan and post-Variscan fault systems. We discuss the spatio-temporal imprint of lithospheric signatures on the pre-Mesozoic basement and their consequence on the formation of the Jura Mountains FTB. Untangling structures within the pre-Mesozoic basement leads us to a modern understanding of the long-term evolution of the detached Mesozoic cover. Furthermore, it allows us to improve the prediction of ages that are potentially preserved within the Mesozoic cover of the Jura FTB.</p>


2013 ◽  
Vol 150 (6) ◽  
pp. 1062-1084 ◽  
Author(s):  
MARTA RAUCH

AbstractThis paper presents the different analogue scenarios of the tectonic evolution of the northern Outer Carpathians (i.e. the Western and northern Eastern Outer Carpathians) which formed as an accretionary wedge in front of the East Alpine–Carpathian–Pannonian (ALCAPA) block during Oligocene–Miocene times. Currently, this fold-and-thrust belt forms an arc which is asymmetrically convex to the north and wider in its eastern part. Palaeomagnetic investigations have suggested that the rocks of the arc underwent counter-clockwise rotation along almost the whole arc, which is difficult to explain as an effect of simple indentation of the triangular indenter. In this case two branches of the arc should be rotated in the opposite directions. The structural evolution of the Western Outer Carpathians is characterized by superposition of two successive tectonic shortening events directed N–S and NE–SW. The results of the presented analogue modelling suggest that two scenarios of the geodynamic evolution of the studied belt could explain the occurrence of such differently oriented shortening events: (1) two phases of differently directed indentation (first to the N, then to the NE) and (2) indenter movement to the NE with simultaneous counter-clockwise rotation. However, the experiment in which the moving indenter is simultaneously rotated produces the most suitable model. The counter-clockwise rotation of the material is only possible in front of both sides of the convex indenter in this model. The results of the analogue modelling also prove that rotation of the ALCAPA block started after formation of the Magura nappe (the innermost nappe of the Western Outer Carpathians).


2016 ◽  
Vol 67 (4) ◽  
pp. 347-370 ◽  
Author(s):  
Jan Kuśmierek ◽  
Urszula Baran

Abstract The discrepant arrangement of the Carpathian nappes and syntectonic deposits of the Carpathian Foredeep reveals the oroclinal migration of the subduction direction of the platform margin during the Late Cenozoic. Formation of the nappes was induced by their detachment from disintegrated segments of the European Platform; the segments were shortened as a result of their vertical rotation in zones of compressional sutures. It finds expression in local occurrence of the backward vergence of folding against the generally forward vergence toward the Carpathian Foredeep. The precompressional configuration of sedimentation areas of particular nappes was reconstructed with application of the palinspastic method, on the basis of the hitherto undervalued model which emphasizes the influence of the subduction and differentiated morphology of the platform basement on the tectonic evolution of the fold and thrust belt. Superposition of the palaeogeographic representations and the present geometry of the orogen allows understanding of the impact of the magnitudes of tectonic displacements on the differentiation of the geological structure in the NE segment of the Carpathians. The differentiation has inspired different views of Polish and Ukrainian geologists on structural classification and evolution of the frontal thrusts.


2018 ◽  
Vol 45 (2) ◽  
pp. 249 ◽  
Author(s):  
Fernando Lebinson ◽  
Martín Turienzo ◽  
Natalia Sánchez ◽  
Vanesa Araujo ◽  
María Celeste D’Annunzio ◽  
...  

The Agrio fold and thrust belt is a thick-skinned orogenic belt developed since Late Cretaceous in response to the convergence between the Nazca and South American plates. The integration of new structural field data and seismic line interpretation allowed us to create two balanced cross-sections, which help to analyse the geometry of both thick and thin-skinned structures, to calculate the tectonic shortenings and finally to discuss the main mechanisms that produced this fold and thrust belt. The predominantly NNW-SSE structures show varying wavelengths, and can be classified into kilometer-scale first order basement involved structures and smaller second, third and fourth order fault-related folds in cover rocks with shallower detachments. Thick-skinned structures comprise fault-bend folds moving into the sedimentary cover, mainly along Late Jurassic evaporites, which form basement wedges that transfer the deformation to the foreland. Thus, shortenings in both basement and cover rocks must be similar and consequently, by measuring the contraction accounted for thin-skinned structures, is possible to propose a suitable model for the thick skinned deformation. The balanced cross-sections indicate shortenings of 11.2 km (18%) for the northern section and 10.9 km (17.3%) for the southern section. These values are different from the shortenings established by previous works in the region, reflecting differences in the assumed model to explain the basement-involved structures. According to our interpretation, the structural evolution of this fold and thrust belt was controlled by major basement-involved thrust systems with subordinate influence of inversion along pre-existing normal faults during the Andean compression.


2019 ◽  
pp. 675-697
Author(s):  
Matías C. Ghiglione ◽  
Gonzalo Ronda ◽  
Rodrigo J. Suárez ◽  
Inés Aramendía ◽  
Vanesa Barberón ◽  
...  

2021 ◽  
Vol 145 ◽  
pp. 104310
Author(s):  
Humaad Ghani ◽  
Edward R. Sobel ◽  
Gerold Zeilinger ◽  
Johannes Glodny ◽  
Irum Irum ◽  
...  

2020 ◽  
pp. SP504-2020-75 ◽  
Author(s):  
Rogelio Hernández-Vergara ◽  
Elisa Fitz-Díaz ◽  
Gilles Brocard ◽  
Dante Jaime Morán-Zenteno

Sign in / Sign up

Export Citation Format

Share Document