Machine Learning-based inference system to detect the phenological stage of a citrus crop for helping deficit irrigation techniques to be automatically applied.

Author(s):  
Manuel Forcén ◽  
Nieves Pavón Pulido ◽  
David Pérez Noguera ◽  
Pablo Berríos Reyes ◽  
Alejandro Pérez Pastor ◽  
...  

<p><span>This paper presents a system that helps farmers to irrigate crops, minimizing water consumption, while productivity is kept, when deficit irrigation techniques are applied, according to the phenological stage of such crop. Such stage is automatically inferred by using a Machine Learning-based technique, which uses single images, which can be acquired by simply using a low cost commercial camera (even the one embedded in a smartphone), as inputs. Specifically, this work compares several Machine Learning approaches, in particular, classical and deep neural networks trained with a dataset obtained from taking multiple real images from a citrus crop. Such images represent different growing stages of the citrus associated to different phenological stages. Since, according to the deficit irrigation approach, the amount of water that can be reduced without affecting the yield depends on the phenological stage of the crop, once such stage is inferred, a Decision Support System uses such information for automatically programming irrigation. The paper also remarks the main advantages of using a single camera as unique sensor in terms of low economic cost as opposed to other systems that uses more expensive and invasive sensors in the crop. In addition, as a smartphone camera could be used as sensor, the smartphone itself could be used as computing device to run the phenological stage detector in real time, and to interact with the Decision Support System by using Cloud and Edge computing technologies. Finally, a set of experiments show the main results obtained after testing different Machine Learning approaches. After comparing such approaches, the best choice is selected to be integrated as a part of the mentioned Decision Support System.</span></p>

2021 ◽  
Vol 12 (2) ◽  
pp. 1-12
Author(s):  
Nan Wang ◽  
Evangelos Katsamakas

Companies seek to leverage data and people analytics to maximize the business value of their talent. This article proposes a recommendation system for personalized workload assignment in the context of people analytics. The article describes the system, which follows a novel two-level hybrid architecture. We evaluate the system performance in a series of computational experiments and discuss future extensions. Overall, the proposed system could create significant business value as a decision support system that could help managers make better decisions. The article demonstrates how computational and machine learning approaches can complement humans in improving the performance of organizations.


2021 ◽  
Vol 12 (2) ◽  
pp. 0-0

Companies seek to leverage data and people analytics to maximize the business value of their talent. This article proposes a recommendation system for personalized workload assignment in the context of people analytics. The article describes the system, which follows a novel two-level hybrid architecture. We evaluate the system performance in a series of computational experiments and discuss future extensions. Overall, the proposed system could create significant business value as a decision support system that could help managers make better decisions. The article demonstrates how computational and machine learning approaches can complement humans in improving the performance of organizations.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1773
Author(s):  
Bogdan Walek ◽  
Ondrej Pektor ◽  
Radim Farana

This paper describes a novel approach in the area of evaluating suitable job applicants for various job positions, and specifies typical areas of requirement and their usage. Requirements for this decision-support system are defined in order to be used in middle-size companies. Suitable tools chosen were fuzzy expert systems, primarily the inference system Takagi-Sugeno type, which were then supplied with implementation of methods of variant multi-criteria analysis. The resulting system is a variable tool with the possibility to simply set the importance of individual selection criteria so that it can be used in various situations, primarily in repeated selection procedures for similar job positions. A strong emphasis is devoted to the explanatory module, which enables the results of the expert system to be used easily. Verification of the system on real data in cooperation with a collaborating company has proved that the system is easily usable.


2021 ◽  
Vol 26 (1) ◽  
pp. 87-93
Author(s):  
Sandeep Patalay ◽  
Madhusudhan Rao Bandlamudi

Investing in stock market requires in-depth knowledge of finance and stock market dynamics. Stock Portfolio Selection and management involve complex financial analysis and decision making policies. An Individual investor seeking to invest in stock portfolio is need of a support system which can guide him to create a portfolio of stocks based on sound financial analysis. In this paper the authors designed a Financial Decision Support System (DSS) for creating and managing a portfolio of stock which is based on Artificial Intelligence (AI) and Machine learning (ML) and combining the traditional approach of mathematical models. We believe this a unique approach to perform stock portfolio, the results of this study are quite encouraging as the stock portfolios created by the DSS are based on strong financial health indices which in turn are giving Return on Investment (ROI) in the range of more than 11% in the short term and more than 61% in the long term, therefore beating the market index by a factor of 15%. This system has the potential to help millions of Individual Investors who can make their financial decisions on stocks and may eventually contribute to a more efficient financial system.


Author(s):  
D.C.Joy Winnie Wise ◽  
M. Logapriya ◽  
R. Padmavathy ◽  
Kavitha ◽  
D.C.Jullie Josephine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document