Towards improving radiometry-derived snow depths with SNOWPACK and SMRT

Author(s):  
Robbie Mallett ◽  
Julienne Stroeve ◽  
Michel Tsamados ◽  
Glen Liston

<p>The depth of overlying snow on sea ice exerts a strong control on atmosphere-ocean heat and light flux and introduces major uncertainties in the remote sensing of sea ice thickness. Satellite-mounted microwave radiometers have enabled retrieval of snow depths over first year ice, but such retrievals are subject to a wide margin of error due to spatial variation in snow stratigraphy and roughness.</p><p>Here we model the microwave signature of snow on sea ice using a recently released sea ice variant of the snowpack evolution model, SNOWPACK (Wever et al., 2020). By advecting parcels of sea ice using ice motion vectors and exposing them to the relevant atmospheric forcing using ERA5 reanalysis, we model the accumulation of snow and the development of snowpack stratigraphy.</p><p>We then pass these modelled snowpacks to the Snow Microwave Radiative Transfer model (Picard et al., 2018) to estimate their microwave emission characteristics. By using relationships from the literature relating the ratios of the 37GHz and 19GHz channels, we calculate whether the traditional “gradient ratio” method (Markus and Cavalieri, 1998) over- or underestimates the depth of snow at a particular point based on our modelling. We then adjust the observed gradient ratio based on the model results in an attempt to better characterise snow depths.</p><p> </p><p>References</p><p>Wever, Nander, et al. "Version 1 of a sea ice module for the physics-based, detailed, multi-layer SNOWPACK model." <em>Geoscientific Model Development</em> 13.1 (2020): 99-119.</p><p>Picard, Ghislain, Melody Sandells, and Henning Löwe. "SMRT: An active–passive microwave radiative transfer model for snow with multiple microstructure and scattering formulations (v1. 0)." <em>Geoscientific Model Development </em>11.7 (2018): 2763-2788.</p><p>Markus, Thorsten, and Donald J. Cavalieri. "Snow depth distribution over sea ice in the Southern Ocean from satellite passive microwave data." <em>Antarctic sea ice: physical processes, interactions and variability </em>74 (1998): 19-39.</p>

2018 ◽  
Vol 10 (9) ◽  
pp. 1451 ◽  
Author(s):  
Alexandre Roy ◽  
Marion Leduc-Leballeur ◽  
Ghislain Picard ◽  
Alain Royer ◽  
Peter Toose ◽  
...  

Detailed angular ground-based L-band brightness temperature (TB) measurements over snow covered frozen soil in a prairie environment were used to parameterize and evaluate an electromagnetic model, the Wave Approach for LOw-frequency MIcrowave emission in Snow (WALOMIS), for seasonal snow. WALOMIS, initially developed for Antarctic applications, was extended with a soil interface model. A Gaussian noise on snow layer thickness was implemented to account for natural variability and thus improve the TB simulations compared to observations. The model performance was compared with two radiative transfer models, the Dense Media Radiative Transfer-Multi Layer incoherent model (DMRT-ML) and a version of the Microwave Emission Model for Layered Snowpacks (MEMLS) adapted specifically for use at L-band in the original one-layer configuration (LS-MEMLS-1L). Angular radiometer measurements (30°, 40°, 50°, and 60°) were acquired at six snow pits. The root-mean-square error (RMSE) between simulated and measured TB at vertical and horizontal polarizations were similar for the three models, with overall RMSE between 7.2 and 10.5 K. However, WALOMIS and DMRT-ML were able to better reproduce the observed TB at higher incidence angles (50° and 60°) and at horizontal polarization. The similar results obtained between WALOMIS and DMRT-ML suggests that the interference phenomena are weak in the case of shallow seasonal snow despite the presence of visible layers with thicknesses smaller than the wavelength, and the radiative transfer model can thus be used to compute L-band brightness temperature.


2015 ◽  
Vol 12 (12) ◽  
pp. 13019-13067
Author(s):  
A. Barella-Ortiz ◽  
J. Polcher ◽  
P. de Rosnay ◽  
M. Piles ◽  
E. Gelati

Abstract. L-Band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm. The work exposed compares brightness temperatures measured by the Soil Moisture and Ocean Salinity (SMOS) mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The latter were estimated using a radiative transfer model and state variables from two land surface models: (i) ORganising Carbon and Hydrology In Dynamic EcosystEms (ORCHIDEE) and (ii) Hydrology – Tiled ECMWF Scheme for Surface Exchanges over Land (H-TESSEL). The radiative transfer model used is the Community Microwave Emission Model (CMEM). A good agreement in the temporal evolution of measured and modelled brightness temperatures is observed. However, their spatial structures are not consistent between them. An Empirical Orthogonal Function analysis of the brightness temperature's error identifies a dominant structure over the South-West of the Iberian Peninsula which evolves during the year and is maximum in Fall and Winter. Hypotheses concerning forcing induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for it at the moment. Further hypotheses are proposed at the end of the paper.


2015 ◽  
Vol 15 (6) ◽  
pp. 3007-3020 ◽  
Author(s):  
R. Loughman ◽  
D. Flittner ◽  
E. Nyaku ◽  
P. K. Bhartia

Abstract. The Gauss–Seidel limb scattering (GSLS) radiative transfer (RT) model simulates the transfer of solar radiation through the atmosphere and is imbedded in the retrieval algorithm used to process data from the Ozone Mapping and Profiler Suite (OMPS) limb profiler (LP), which was launched on the Suomi NPP satellite in October 2011. A previous version of this model has been compared with several other limb scattering RT models in previous studies, including Siro, MCC++, CDIPI, LIMBTRAN, SASKTRAN, VECTOR, and McSCIA. To address deficiencies in the GSLS radiance calculations revealed in earlier comparisons, several recent changes have been added that improve the accuracy and flexibility of the GSLS model, including 1. improved treatment of the variation of the extinction coefficient with altitude, both within atmospheric layers and above the nominal top of the atmosphere; 2. addition of multiple-scattering source function calculations at multiple solar zenith angles along the line of sight (LOS); 3. introduction of variable surface properties along the limb LOS, with minimal effort required to add variable atmospheric properties along the LOS as well; 4. addition of the ability to model multiple aerosol types within the model atmosphere. The model improvements 1 and 2 are verified by comparison to previously published results (using standard radiance tables whenever possible), demonstrating significant improvement in cases for which previous versions of the GSLS model performed poorly. The single-scattered radiance errors that were as high as 4% in earlier studies are now generally reduced to 0.3%, while total radiance errors generally decline from 10% to 1–3%. In all cases, the tangent height dependence of the GSLS radiance error is greatly reduced.


2018 ◽  
Vol 12 (4) ◽  
pp. 1331-1345 ◽  
Author(s):  
Peng Lu ◽  
Matti Leppäranta ◽  
Bin Cheng ◽  
Zhijun Li ◽  
Larysa Istomina ◽  
...  

Abstract. Pond color, which creates the visual appearance of melt ponds on Arctic sea ice in summer, is quantitatively investigated using a two-stream radiative transfer model for ponded sea ice. The upwelling irradiance from the pond surface is determined and then its spectrum is transformed into RGB (red, green, blue) color space using a colorimetric method. The dependence of pond color on various factors such as water and ice properties and incident solar radiation is investigated. The results reveal that increasing underlying ice thickness Hi enhances both the green and blue intensities of pond color, whereas the red intensity is mostly sensitive to Hi for thin ice (Hi  <  1.5 m) and to pond depth Hp for thick ice (Hi  >  1.5 m), similar to the behavior of melt-pond albedo. The distribution of the incident solar spectrum F0 with wavelength affects the pond color rather than its intensity. The pond color changes from dark blue to brighter blue with increasing scattering in ice, and the influence of absorption in ice on pond color is limited. The pond color reproduced by the model agrees with field observations for Arctic sea ice in summer, which supports the validity of this study. More importantly, the pond color has been confirmed to contain information about meltwater and underlying ice, and therefore it can be used as an index to retrieve Hi and Hp. Retrievals of Hi for thin ice (Hi  <  1 m) agree better with field measurements than retrievals for thick ice, but those of Hp are not good. The analysis of pond color is a new potential method to obtain thin ice thickness in summer, although more validation data and improvements to the radiative transfer model will be needed in future.


2008 ◽  
Vol 52 ◽  
pp. 13-18
Author(s):  
Hui LU ◽  
Toshio KOIKE ◽  
Hiroyuki TSUTSUI ◽  
David Ndegwa KURIA ◽  
Tobias GRAF ◽  
...  

2017 ◽  
Vol 11 (6) ◽  
pp. 2867-2881 ◽  
Author(s):  
Amelia A. Marks ◽  
Maxim L. Lamare ◽  
Martin D. King

Abstract. Radiative-transfer calculations of the light reflectivity and extinction coefficient in laboratory-generated sea ice doped with and without black carbon demonstrate that the radiative-transfer model TUV-snow can be used to predict the light reflectance and extinction coefficient as a function of wavelength. The sea ice is representative of first-year sea ice containing typical amounts of black carbon and other light-absorbing impurities. The experiments give confidence in the application of the model to predict albedo of other sea ice fabrics. Sea ices,  ∼  30 cm thick, were generated in the Royal Holloway Sea Ice Simulator ( ∼  2000 L tanks) with scattering cross sections measured between 0.012 and 0.032 m2 kg−1 for four ices. Sea ices were generated with and without  ∼  5 cm upper layers containing particulate black carbon. Nadir reflectances between 0.60 and 0.78 were measured along with extinction coefficients of 0.1 to 0.03 cm−1 (e-folding depths of 10–30 cm) at a wavelength of 500 nm. Values were measured between light wavelengths of 350 and 650 nm. The sea ices generated in the Royal Holloway Sea Ice Simulator were found to be representative of natural sea ices. Particulate black carbon at mass ratios of  ∼  75,  ∼  150 and  ∼  300 ng g−1 in a 5 cm ice layer lowers the albedo to 97, 90 and 79 % of the reflectivity of an undoped clean sea ice (at a wavelength of 500 nm).


Sign in / Sign up

Export Citation Format

Share Document