Coupled ice-climate simulation of future Greenland ice sheet evolution: mechanisms, thresholds and feedbacks for accelerated mass loss

Author(s):  
Miren Vizcaino ◽  
Laura Muntjewerf ◽  
Raymond Sellevold ◽  
Carolina Ernani da Silva ◽  
Michele Petrini ◽  
...  

<p>The Greenland ice sheet (GrIS) has been losing mass in the last several decades, with a current contributing of around 0.7 mm per year to global mean sea level rise (SLR). Projections of future melt rates are often derived from standalone ice sheet models, forced by data from global or regional climate models. In many cases, the surface mass balance parameterization relies on simplified schemes that relate melt with surface temperature.</p><p>In this study, we present a mass and energy conserving, 350-year simulation with the Community Earth System Model version 2.1 (CESM2.1) bidirectionally coupled to the Community Ice Sheet Model version 2.1 (CISM2.1). In this simulation, the carbon dioxide concentration is initially increasing by 1% per year  from pre-industrial levels (287 ppmv), to a quadrupling (1140 ppmv) and stabilization after year 140. The model simulates a global warming of 5.3 K and 8.5 K with respect to preindustrial by years 131-150 and 331-150, respectively, and a strong decline in the North Atlantic Meridional Overturning Circulation that is initiated before GrIS runoff substantially increases. 91% of the total GrIS contribution to global mean sea level rise (SLR, 1140 mm) is simulated in the two centuries following CO2 stabilization, as the mass loss increases from 2.2 mm SLR per year in 131-150 to 6.6 mm SLR per year in 331-351. This increase is caused by melt acceleration as the ablation areas expand, and Greenland summer surface temperatures predominantly approach melt conditions when the global warming exceeds a certain threshold (around 4.2 K).  This enhances the albedo and turbulent heat fluxes contribution to total melt energy.  </p>

2020 ◽  
Author(s):  
Thomas Frederikse ◽  
Felix Landerer ◽  
Lambert Caron ◽  
Surendra Adhikari ◽  
David Parkes ◽  
...  

<p>Global-mean sea level (GMSL) has been rising unsteadily by about 1.5 mm/yr since 1900, but the underlying causes of this trend and the multi-decadal variations are still poorly understood. Over the last few years, updated estimates of the underlying contributing processes have become available, notably for the contributions from glaciers, terrestrial water storage, the Greenland Ice Sheet, and thermal expansion. In parallel, 20th-century GMSL estimates have been revised downward as a result of improved reconstruction approaches, spatial bias correction schemes, and the inclusion of estimates of local vertical land motion at tide-gauge locations. Together, both developments now necessitate the re-evaluation of the GMSL budget to determine whether the observed sea-level rise since 1900 can be reconciled with the estimated sum of contributing processes. </p><p>Here we present a probabilistic framework to reconstruct and budget sea level with independent observations considering their inherent uncertainties. We find that the sum of thermal expansion, ice-mass loss and terrestrial water storage changes is consistent with the trends and multi-decadal variability in observed sea level on both global and basin scales, which we reconstruct from tide-gauge records. </p><p>Glacier-dominated cryospheric mass loss has caused twice as much sea-level rise as thermal expansion since 1900. Glacier and Greenland Ice Sheet mass loss well explains the high rates typically seen in global sea-level reconstructions during the 1930s, while a sharp increase in water impoundment by artificial reservoirs has been the dominant contributor to lower-than-average rates during the 1970s. The acceleration since the 1970s is caused by both thermal expansion and increased Greenland mass loss. No additional large-scale deep ocean warming or additional mass loss from Antarctica are needed to explain 20th-century changes in global-mean sea level. This assessment reconciles the magnitude of observed global-mean sea-level rise since 1900 with estimates of underlying processes.</p>


2013 ◽  
Vol 26 (13) ◽  
pp. 4476-4499 ◽  
Author(s):  
J. M. Gregory ◽  
N. J. White ◽  
J. A. Church ◽  
M. F. P. Bierkens ◽  
J. E. Box ◽  
...  

Abstract Confidence in projections of global-mean sea level rise (GMSLR) depends on an ability to account for GMSLR during the twentieth century. There are contributions from ocean thermal expansion, mass loss from glaciers and ice sheets, groundwater extraction, and reservoir impoundment. Progress has been made toward solving the “enigma” of twentieth-century GMSLR, which is that the observed GMSLR has previously been found to exceed the sum of estimated contributions, especially for the earlier decades. The authors propose the following: thermal expansion simulated by climate models may previously have been underestimated because of their not including volcanic forcing in their control state; the rate of glacier mass loss was larger than previously estimated and was not smaller in the first half than in the second half of the century; the Greenland ice sheet could have made a positive contribution throughout the century; and groundwater depletion and reservoir impoundment, which are of opposite sign, may have been approximately equal in magnitude. It is possible to reconstruct the time series of GMSLR from the quantified contributions, apart from a constant residual term, which is small enough to be explained as a long-term contribution from the Antarctic ice sheet. The reconstructions account for the observation that the rate of GMSLR was not much larger during the last 50 years than during the twentieth century as a whole, despite the increasing anthropogenic forcing. Semiempirical methods for projecting GMSLR depend on the existence of a relationship between global climate change and the rate of GMSLR, but the implication of the authors' closure of the budget is that such a relationship is weak or absent during the twentieth century.


2020 ◽  
Author(s):  
Jim Jordan ◽  
Hilmar Gudmundsson ◽  
Adrian Jenkins ◽  
Chris Stokes ◽  
Stewart Jamieson ◽  
...  

<p>The East Antarctic Ice Sheet (EAIS) is the single largest potential contributor to future global mean sea level rise, containing a water mass equivalent of 53 m. Recent work has found the overall mass balance of the EAIS to be approximately in equilibrium, albeit with large uncertainties. However, changes in oceanic conditions have the potential to upset this balance. This could happen by both a general warming of the ocean and also by shifts in oceanic conditions allowing warmer water masses to intrude into ice shelf cavities.</p><p>We use the Úa numerical ice-flow model, combined with ocean-melt rates parameterized by the PICO box mode, to predict the future contribution to global-mean sea level of the EAIS. Results are shown for the next 100 years under a range of emission scenarios and oceanic conditions on a region by region basis, as well as for the whole of the EAIS. </p>


2020 ◽  
Author(s):  
Lorena Moreira ◽  
Anny Cazenave ◽  
Denise Cáceres ◽  
Hindumathi Palanisamy ◽  
Habib Dieng

<p>Since nearly 3 decades, high-precision satellite altimetry allows us to precisely measure the mean sea level evolution at global and regional scales. In terms of global mean, sea level is rising at a mean rate of 3.2 mm/yr. The altimetry record is also suggesting that the global mean sea level rise is accelerating. However, the exact value of the acceleration and even its mere existence are still debated. Determination of the global warming-related sea level rate and acceleration are somewhat hindered by the interannual signal caused by natural climate variability. During the recent years, several studies have shown that at interannual time scale, the global mean sea level is mostly due to ENSO-driven land water storage variations. But thermal expansion fluctuations may also contribute. Thus, to isolate the global warming signal in the global mean sea level, we need to remove the ENSO-related interannual variability. For that purpose we use the Water Gap Global Hydrological model developed by the University of Frankfurt for land water storage as well as GRACE space gravimetry data on land and empirical models based on ENSO indices. We also extract the ENSO-related signal in thermal expansion. After removing the total interannual variability signal due to both mass and steric components, we compute the evolution with time of the ‘residual’ rate of sea level rise over successive 5-year moving windows, as well as the associated acceleration. Using time series of thermal expansion and ice sheet mass balances, we also estimate the respective contributions of each component to the global mean sea level acceleration.</p>


2018 ◽  
Vol 9 (4) ◽  
pp. 1169-1189 ◽  
Author(s):  
Martin Rückamp ◽  
Ulrike Falk ◽  
Katja Frieler ◽  
Stefan Lange ◽  
Angelika Humbert

Abstract. Sea-level rise associated with changing climate is expected to pose a major challenge for societies. Based on the efforts of COP21 to limit global warming to 2.0 ∘C or even 1.5 ∘C by the end of the 21st century (Paris Agreement), we simulate the future contribution of the Greenland ice sheet (GrIS) to sea-level change under the low emission Representative Concentration Pathway (RCP) 2.6 scenario. The Ice Sheet System Model (ISSM) with higher-order approximation is used and initialized with a hybrid approach of spin-up and data assimilation. For three general circulation models (GCMs: HadGEM2-ES, IPSL-CM5A-LR, MIROC5) the projections are conducted up to 2300 with forcing fields for surface mass balance (SMB) and ice surface temperature (Ts) computed by the surface energy balance model of intermediate complexity (SEMIC). The projected sea-level rise ranges between 21–38 mm by 2100 and 36–85 mm by 2300. According to the three GCMs used, global warming will exceed 1.5 ∘C early in the 21st century. The RCP2.6 peak and decline scenario is therefore manually adjusted in another set of experiments to suppress the 1.5 ∘C overshooting effect. These scenarios show a sea-level contribution that is on average about 38 % and 31 % less by 2100 and 2300, respectively. For some experiments, the rate of mass loss in the 23rd century does not exclude a stable ice sheet in the future. This is due to a spatially integrated SMB that remains positive and reaches values similar to the present day in the latter half of the simulation period. Although the mean SMB is reduced in the warmer climate, a future steady-state ice sheet with lower surface elevation and hence volume might be possible. Our results indicate that uncertainties in the projections stem from the underlying GCM climate data used to calculate the surface mass balance. However, the RCP2.6 scenario will lead to significant changes in the GrIS, including elevation changes of up to 100 m. The sea-level contribution estimated in this study may serve as a lower bound for the RCP2.6 scenario, as the currently observed sea-level rise is not reached in any of the experiments; this is attributed to processes (e.g. ocean forcing) not yet represented by the model, but proven to play a major role in GrIS mass loss.


2021 ◽  
Author(s):  
Emily A. Hill ◽  
Sebastian H. R. Rosier ◽  
G. Hilmar Gudmundsson ◽  
Matthew Collins

Abstract. The future of the Antarctic Ice Sheet in response to climate warming is one of the largest sources of uncertainty in estimates of future changes in global mean sea level (∆GMSL). Mass loss is currently concentrated in regions of warm circumpolar deep water, but it is unclear how ice shelves currently surrounded by relatively cold ocean waters will respond to climatic changes in the future. Studies suggest that warm water could flush the Filchner-Ronne (FR) ice shelf cavity during the 21st century, but the inland ice sheet response to a drastic increase in ice shelf melt rates, is poorly known. Here, we use an ice flow model and uncertainty quantification approach to project the GMSL contribution of the FR basin under RCP emissions scenarios, and assess the forward propagation and proportional contribution of uncertainties in model parameters (related to ice dynamics, and atmospheric/oceanic forcing) on these projections. Our probabilistic projections, derived from an extensive sample of the parameter space using a surrogate model, reveal that the FR basin is unlikely to contribute positively to sea level rise by the 23rd century. This is primarily due to the mitigating effect of increased accumulation with warming, which is capable of suppressing ice loss associated with ocean–driven increases in sub-shelf melt. Mass gain (negative ∆GMSL) from the FR basin increases with warming, but uncertainties in these projections also become larger. In the highest emission scenario RCP 8.5, ∆GMSL is likely to range from −103 to 26 mm, and this large spread can be apportioned predominantly to uncertainties in parameters driving increases in precipitation (30 %) and sub-shelf melting (44 %). There is potential, within the bounds of our input parameter space, for major collapse and retreat of ice streams feeding the FR ice shelf, and a substantial positive contribution to GMSL (up to approx. 300 mm), but we consider such a scenario to be very unlikely. Adopting uncertainty quantification techniques in future studies will help to provide robust estimates of potential sea level rise and further identify target areas for constraining projections.


2018 ◽  
Author(s):  
Johanna Beckmann ◽  
Mahé Perrette ◽  
Sebastian Beyer ◽  
Reinhard Calov ◽  
Matteo Willeit ◽  
...  

Abstract. In recent decades, the Greenland Ice Sheet has experienced an accelerated mass loss, contributing to approximately 25 % of contemporary sea level rise. This mass loss is caused by increased surface melt over a large area of the ice sheet and by the thinning, retreat and acceleration of numerous Greenland outlet glaciers. The latter is likely connected to enhanced submarine melting that, in turn, can be explained by ocean warming and enhanced subglacial discharge. The mechanisms involved in submarine melting are not yet fully understood and are only crudely incorporated in some models of the Greenland Ice Sheet. Here, we investigate the response of twelve representative Greenland outlet glaciers to atmospheric and oceanic warming using a coupled 1D line-plume glacier-flowline model. The model parameters have been tuned for individual outlet glaciers using present-day observational constraints. We then run the model from present to the year 2100, forcing the model with changes in surface mass balance and surface runoff from simulations with a regional climate model for the RCP 8.5 scenario, and applying a linear ocean temperature warming with different rates of changes representing uncertainties in the CMIP 5 model experiments for the same climate change scenario. We also used different initial temperature-salinity profiles obtained from direct measurements and from ocean reanalysis data. Using different combinations of submarine melting and calving parameters that reproduce the present-day state of the glaciers, we estimated uncertainties in the contribution to global sea level rise for individual glaciers. We also performed a factor analysis, which shows that the role of different forcing (change in surface mass balance, ocean temperature and subglacial discharge) are diverse for individual glaciers. We found that changes in, ocean temperature and subglacial discharge are of comparable importance for the cumulative contribution of all twelve glaciers to global sea level rise in the 21st century. The median range of the cumulative contribution to the global sea level rise for all twelve glaciers is about 14 mm from which roughly 85 % are associated with the response to increased submarine melting and the remaining part to surface mass loss. We also found a weak correlation (correlation coefficient 0.35) between present-day grounding line discharge and their future contribution to sea level rise in 2100. If the contribution of the twelve glaciers is scaled up to the total present-day discharge of Greenland, we estimate the contribution of all Greenland glaciers to 21st-century sea level rise to be approximately 50 mm. This result confirms earlier studies that the response of the outlet glaciers to global warming has to be taken into account to correctly assess the total contribution of Greenland to sea level change.


Author(s):  
Thomas S. Bianchi

As I briefly mentioned in Chapter 3, the global mean sea level, as deduced from the accumulation of paleo-sea level, tide gauge, and satellite-altimeter data, rose by 0.19 m (range, 0.17–0.21 m) between 1901 and 2010 (see Figure 3.3). Global mean sea level represents the longer-term global changes in sea level, without the short-term variability, and is also commonly called eustatic sea-level change. On an annual basis, global mean sea-level change translates to around 1.5 to 2 mm. During the last century, global sea level rose by 10 to 25 cm. Projections of sea-level rise for the period from 2000 to 2081 indicate that global mean sea-level rise will likely be as high as 0.52 to 0.98 m, or 8 to 16 mm/ yr, depending on the greenhouse gas emission scenarios used in the models. Mean sea-level rise is primarily controlled by ocean thermal expansion. But there is also transfer of water from land to ocean via melting of land ice, primarily in Greenland and Antarctica. Model predictions indicate that thermal expansion will increase with global warming because the contribution from glaciers will decrease as their volume is lost over time. (Take a look at Figure 5.1 if you have doubts about glaciers melting.) And remember our discussion in Chapter 2 about the role of the oceans in absorbing carbon dioxide (CO2) and the resultant ocean acidification in recent years. The global ocean also absorbs about 90% of all the net energy increase from global warming as well, which is why the ocean temperature is increasing, which in turn results in thermal expansion and sea-level rise. To make things even more complicated, the expansion of water will vary with latitude because expansion of seawater is greater with increasing temperature. In any event, sea level is expected to rise by 1 to 3 m per degree of warming over the next few millennia.


Sign in / Sign up

Export Citation Format

Share Document