COSMIC-2 Precise Orbit Determination Results

Author(s):  
Jan-Peter Weiss ◽  
Doug Hunt ◽  
William Schreiner ◽  
Teresa VanHove ◽  
Daniel Arnold ◽  
...  

<p>We present results for GNSS orbit estimation strategies implemented for the FORMOSAT-7/COSMIC-2 (Constellation Observing System for Meteorology, Ionosphere, and Climate) constellation. The six COSMIC-2 satellites launched on June 25, 2019 into a 24 deg inclination, ~725 km circular orbit. Over time, all satellites will be lowered to an operational altitude of ~520 km. The primary COSMIC-2 science payload is the JPL designed Tri-GNSS Radio-occultation Receiver System (TGRS), which tracks GPS and GLONASS signals on two upward looking choke-ring precise orbit determination antennas facing the forward- and anti-velocity directions. We evaluate recently implemented post-processed orbit determination strategies. These include single antenna GPS-only and GPS+GLONASS solutions, as well as experimental dual-antenna GPS-only processing applying different approaches for the handling of receiver clock parameters (e.g. dual clocks, single clock plus bias). Evaluation metrics include data volume and tracking arc coverage, postfit residuals, internal orbit overlaps, and stability of the receiver clock estimates. We furthermore compare the performance of the six orbiters, and look for differences in quality metrics at the higher and lower orbit altitudes.</p>

2020 ◽  
Vol 12 (7) ◽  
pp. 1180 ◽  
Author(s):  
Josef Innerkofler ◽  
Gottfried Kirchengast ◽  
Marc Schwärz ◽  
Christian Pock ◽  
Adrian Jäggi ◽  
...  

Global Navigation Satellite System (GNSS) Radio Occultation (RO) is a highly valuable remote sensing technique for probing the Earth’s atmosphere, due to its global coverage, high accuracy, long-term stability, and essentially all-weather capability. In order to ensure the highest quality of essential climate variables (ECVs), derived from GNSS signal tracking by RO satellites in low Earth orbit (LEO), the orbit positions and velocities of the GNSS transmitter and LEO receiver satellites need to be determined with high and proven accuracy and reliability. Wegener Center’s new Reference Occultation Processing System (rOPS) hence aims to integrate uncertainty estimation at all stages of the processing. Here we present a novel setup for precise orbit determination (POD) within the rOPS, which routinely and in parallel performs the LEO POD with the two independent software packages Bernese GNSS software (v5.2) and NAPEOS (v3.3.1), employing two different GNSS orbit data products. This POD setup enables mutual consistency checks of the calculated orbit solutions and is used for position and velocity uncertainty estimation, including estimated systematic and random uncertainties. For LEOs enabling laser tracking we involve position uncertainty estimates from satellite laser ranging. Furthermore, we intercompare the LEO orbit solutions with solutions from other leading orbit processing centers for cross-validation. We carefully analyze multi-month, multi-satellite POD result statistics and find a strong overall consistency of estimates within LEO orbit uncertainty target specifications of 5 cm in position and 0.05 mm/s in velocity for the CHAMP, GRACE-A, and Metop-A/B missions. In 92% of the days investigated over two representative 3-month periods (July to September in 2008 and 2013) these POD uncertainty targets, which enable highly accurate climate-quality RO processing, are satisfied. The moderately higher uncertainty estimates found for the remaining 8% of days (∼5–15 cm) result in increased uncertainties of RO-retrieved ECVs. This allows identification of RO profiles of somewhat reduced quality, a potential benefit for adequate further use in climate monitoring and research.


2021 ◽  
Vol 133 (4) ◽  
Author(s):  
K. Sośnica ◽  
G. Bury ◽  
R. Zajdel ◽  
K. Kazmierski ◽  
J. Ventura-Traveset ◽  
...  

AbstractThe first pair of satellites belonging to the European Global Navigation Satellite System (GNSS)—Galileo—has been accidentally launched into highly eccentric, instead of circular, orbits. The final height of these two satellites varies between 17,180 and 26,020 km, making these satellites very suitable for the verification of the effects emerging from general relativity. We employ the post-Newtonian parameterization (PPN) for describing the perturbations acting on Keplerian orbit parameters of artificial Earth satellites caused by the Schwarzschild, Lense–Thirring, and de Sitter general relativity effects. The values emerging from PPN numerical simulations are compared with the approximations based on the Gaussian perturbations for the temporal variations of the Keplerian elements of Galileo satellites in nominal, near-circular orbits, as well as in the highly elliptical orbits. We discuss what kinds of perturbations are detectable using the current accuracy of precise orbit determination of artificial Earth satellites, including the expected secular and periodic variations, as well as the constant offsets of Keplerian parameters. We found that not only secular but also periodic variations of orbit parameters caused by general relativity effects exceed the value of 1 cm within 24 h; thus, they should be fully detectable using the current GNSS precise orbit determination methods. Many of the 1-PPN effects are detectable using the Galileo satellite system, but the Lense–Thirring effect is not.


2021 ◽  
Vol 13 (15) ◽  
pp. 3033
Author(s):  
Hui Wei ◽  
Jiancheng Li ◽  
Xinyu Xu ◽  
Shoujian Zhang ◽  
Kaifa Kuang

In this paper, we propose a new reduced-dynamic (RD) method by introducing the second-order time-difference position (STP) as additional pseudo-observations (named the RD_STP method) for the precise orbit determination (POD) of low Earth orbiters (LEOs) from GPS observations. Theoretical and numerical analyses show that the accuracies of integrating the STPs of LEOs at 30 s intervals are better than 0.01 m when the forces (<10−5 ms−2) acting on the LEOs are ignored. Therefore, only using the Earth’s gravity model is good enough for the proposed RD_STP method. All unmodeled dynamic models (e.g., luni-solar gravitation, tide forces) are treated as the error sources of the STP pseudo-observation. In addition, there are no pseudo-stochastic orbit parameters to be estimated in the RD_STP method. Finally, we use the RD_STP method to process 15 days of GPS data from the GOCE mission. The results show that the accuracy of the RD_STP solution is more accurate and smoother than the kinematic solution in nearly polar and equatorial regions, and consistent with the RD solution. The 3D RMS of the differences between the RD_STP and RD solutions is 1.93 cm for 1 s sampling. This indicates that the proposed method has a performance comparable to the RD method, and could be an alternative for the POD of LEOs.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Xingyu Zhou ◽  
Hua Chen ◽  
Wenlan Fan ◽  
Xiaohui Zhou ◽  
Qusen Chen ◽  
...  

2020 ◽  
Vol 12 (21) ◽  
pp. 3646
Author(s):  
Xuewen Gong ◽  
Jizhang Sang ◽  
Fuhong Wang ◽  
Xingxing Li

Precise orbit determination (POD) using GNSS has been rapidly developed and is the mainstream technology for the navigation of low Earth orbit (LEO) satellites. The initialization of orbit parameters is a key prerequisite for LEO POD processing. For a LEO satellite equipped with a GNSS receiver, sufficient discrete kinematic positions can be obtained easily by processing space-borne GNSS data, and its orbit parameters can thus be estimated directly in iterative manner. This method of direct iterative estimation is called as the direct approach, which is generally considered highly reliable, but in practical applications it has risk of failure. Stability analyses demonstrate that the direct approach is sensitive to oversized errors in the starting velocity vector at the reference time, which may lead to large errors in design matrix because the reference orbit may be significantly distorted, and eventually cause the divergence of the orbit parameter estimation. In view of this, a more reliable method, termed the progressive approach, is presented in this paper. Instead of estimating the orbit parameters directly, it first fits the discrete kinematic positions to a reference ephemeris in the form of the GNSS broadcast ephemeris, which construct a reference orbit that is smooth and close to the true orbit. Based on the reference orbit, the starting orbit parameters are computed in sufficient accuracy, and then the final orbit parameters are estimated with a high accuracy by using discrete kinematic positions as measurements. The stability analyses show that the design matrix errors are reduced in the progressive approach, which would assure more robust orbit parameter estimation than the direct estimation approach. Various orbit initialization experiments are performed on the KOMPSAT-5 and FY3C satellites. The results have fully verified the high reliability of the proposed progressive approach.


2018 ◽  
Vol 56 (6) ◽  
pp. 3148-3158 ◽  
Author(s):  
Sergei Rudenko ◽  
Mathis BloBfeld ◽  
Horst Muller ◽  
Denise Dettmering ◽  
Detlef Angermann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document