Assessment of single-difference and track-to-track ambiguity resolution in LEO precise orbit determination

GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Xingyu Zhou ◽  
Hua Chen ◽  
Wenlan Fan ◽  
Xiaohui Zhou ◽  
Qusen Chen ◽  
...  
2019 ◽  
Vol 11 (23) ◽  
pp. 2815 ◽  
Author(s):  
Xingxing Li ◽  
Jiaqi Wu ◽  
Keke Zhang ◽  
Xin Li ◽  
Yun Xiong ◽  
...  

The rapid growing number of earth observation missions and commercial low-earth-orbit (LEO) constellation plans have provided a strong motivation to get accurate LEO satellite position and velocity information in real time. This paper is devoted to improve the real-time kinematic LEO orbits through fixing the zero-differenced (ZD) ambiguities of onboard Global Navigation Satellite System (GNSS) phase observations. In the proposed method, the real-time uncalibrated phase delays (UPDs) are estimated epoch-by-epoch via a global-distributed network to support the ZD ambiguity resolution (AR) for LEO satellites. By separating the UPDs, the ambiguities of onboard ZD GPS phase measurements recover their integer nature. Then, wide-lane (WL) and narrow-lane (NL) AR are performed epoch-by-epoch and the real-time ambiguity–fixed orbits are thus obtained. To validate the proposed method, a real-time kinematic precise orbit determination (POD), for both Sentinel-3A and Swarm-A satellites, was carried out with ambiguity–fixed and ambiguity–float solutions, respectively. The ambiguity fixing results indicate that, for both Sentinel-3A and Swarm-A, over 90% ZD ambiguities could be properly fixed with the time to first fix (TTFF) around 25–30 min. For the assessment of LEO orbits, the differences with post-processed reduced dynamic orbits and satellite laser ranging (SLR) residuals are investigated. Compared with the ambiguity–float solution, the 3D orbit difference root mean square (RMS) values reduce from 7.15 to 5.23 cm for Sentinel-3A, and from 5.29 to 4.01 cm for Swarm-A with the help of ZD AR. The SLR residuals also show notable improvements for an ambiguity–fixed solution; the standard deviation values of Sentinel-3A and Swarm-A are 4.01 and 2.78 cm, with improvements of over 20% compared with the ambiguity–float solution. In addition, the phase residuals of ambiguity–fixed solution are 0.5–1.0 mm larger than those of the ambiguity–float solution; the possible reason is that the ambiguity fixing separate integer ambiguities from unmodeled errors used to be absorbed in float ambiguities.


2019 ◽  
Vol 93 (12) ◽  
pp. 2585-2603
Author(s):  
Xiangdong An ◽  
Xiaolin Meng ◽  
Hua Chen ◽  
Weiping Jiang ◽  
Ruijie Xi ◽  
...  

2016 ◽  
Vol 90 (8) ◽  
pp. 715-726 ◽  
Author(s):  
Yang Liu ◽  
Maorong Ge ◽  
Chuang Shi ◽  
Yidong Lou ◽  
Jens Wickert ◽  
...  

Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 25
Author(s):  
Zhiyu Wang ◽  
Zishen Li ◽  
Ningbo Wang ◽  
Mainul Hoque ◽  
Liang Wang ◽  
...  

The real-time integer-ambiguity resolution of the carrier-phase observation is one of the most effective approaches to enhance the accuracy of real-time precise point positioning (PPP), kinematic precise orbit determination (KPOD), and reduced-dynamic precise orbit determination (RPOD) for low earth orbit (LEO) satellites. In this study, the integer phase clock (IPC) and wide-lane satellite bias (WSB) products from CNES (Centre National d’Etudes Spatiales) are used to fix ambiguity in real time. Meanwhile, the three models of real-time PPP, KPOD, and RPOD are applied to validate the contribution of ambiguity resolution. Experimental results show that (1) the average positioning accuracy of IGS stations for ambiguity-fixed solutions is improved from about 7.14 to 5.91 cm, with an improvement of around 17% compared to the real-time float PPP solutions, with enhancement in the east-west direction particularly significant, with an improvement of about 29%; (2) the average accuracy of the estimated LEO orbit with ambiguity-fixed solutions in the real-time KPOD and RPOD mode is improved by about 16% and 10%, respectively, with respect to the corresponding mode with the ambiguity-float solutions; (3) the performance of real-time LEO RPOD is better than that of the corresponding KPOD, regardless of fixed- or float-ambiguity solutions. Moreover, the average ambiguity-fixed ratio can reach more than 90% in real-time PPP, KPOD, and RPOD.


Measurement ◽  
2021 ◽  
pp. 110593
Author(s):  
Yaquan Peng ◽  
Xiaolei Dai ◽  
Yidong Lou ◽  
Xiaopeng Gong ◽  
Fu Zheng

Sign in / Sign up

Export Citation Format

Share Document