scholarly journals Precise Orbit Determination for Climate Applications of GNSS Radio Occultation including Uncertainty Estimation

2020 ◽  
Vol 12 (7) ◽  
pp. 1180 ◽  
Author(s):  
Josef Innerkofler ◽  
Gottfried Kirchengast ◽  
Marc Schwärz ◽  
Christian Pock ◽  
Adrian Jäggi ◽  
...  

Global Navigation Satellite System (GNSS) Radio Occultation (RO) is a highly valuable remote sensing technique for probing the Earth’s atmosphere, due to its global coverage, high accuracy, long-term stability, and essentially all-weather capability. In order to ensure the highest quality of essential climate variables (ECVs), derived from GNSS signal tracking by RO satellites in low Earth orbit (LEO), the orbit positions and velocities of the GNSS transmitter and LEO receiver satellites need to be determined with high and proven accuracy and reliability. Wegener Center’s new Reference Occultation Processing System (rOPS) hence aims to integrate uncertainty estimation at all stages of the processing. Here we present a novel setup for precise orbit determination (POD) within the rOPS, which routinely and in parallel performs the LEO POD with the two independent software packages Bernese GNSS software (v5.2) and NAPEOS (v3.3.1), employing two different GNSS orbit data products. This POD setup enables mutual consistency checks of the calculated orbit solutions and is used for position and velocity uncertainty estimation, including estimated systematic and random uncertainties. For LEOs enabling laser tracking we involve position uncertainty estimates from satellite laser ranging. Furthermore, we intercompare the LEO orbit solutions with solutions from other leading orbit processing centers for cross-validation. We carefully analyze multi-month, multi-satellite POD result statistics and find a strong overall consistency of estimates within LEO orbit uncertainty target specifications of 5 cm in position and 0.05 mm/s in velocity for the CHAMP, GRACE-A, and Metop-A/B missions. In 92% of the days investigated over two representative 3-month periods (July to September in 2008 and 2013) these POD uncertainty targets, which enable highly accurate climate-quality RO processing, are satisfied. The moderately higher uncertainty estimates found for the remaining 8% of days (∼5–15 cm) result in increased uncertainties of RO-retrieved ECVs. This allows identification of RO profiles of somewhat reduced quality, a potential benefit for adequate further use in climate monitoring and research.

2021 ◽  
Vol 133 (4) ◽  
Author(s):  
K. Sośnica ◽  
G. Bury ◽  
R. Zajdel ◽  
K. Kazmierski ◽  
J. Ventura-Traveset ◽  
...  

AbstractThe first pair of satellites belonging to the European Global Navigation Satellite System (GNSS)—Galileo—has been accidentally launched into highly eccentric, instead of circular, orbits. The final height of these two satellites varies between 17,180 and 26,020 km, making these satellites very suitable for the verification of the effects emerging from general relativity. We employ the post-Newtonian parameterization (PPN) for describing the perturbations acting on Keplerian orbit parameters of artificial Earth satellites caused by the Schwarzschild, Lense–Thirring, and de Sitter general relativity effects. The values emerging from PPN numerical simulations are compared with the approximations based on the Gaussian perturbations for the temporal variations of the Keplerian elements of Galileo satellites in nominal, near-circular orbits, as well as in the highly elliptical orbits. We discuss what kinds of perturbations are detectable using the current accuracy of precise orbit determination of artificial Earth satellites, including the expected secular and periodic variations, as well as the constant offsets of Keplerian parameters. We found that not only secular but also periodic variations of orbit parameters caused by general relativity effects exceed the value of 1 cm within 24 h; thus, they should be fully detectable using the current GNSS precise orbit determination methods. Many of the 1-PPN effects are detectable using the Galileo satellite system, but the Lense–Thirring effect is not.


2021 ◽  
Vol 13 (16) ◽  
pp. 3189
Author(s):  
Min Li ◽  
Tianhe Xu ◽  
Haibo Ge ◽  
Meiqian Guan ◽  
Honglei Yang ◽  
...  

The precise orbit determination (POD) accuracy of the Chinese BeiDou Navigation Satellite System (BDS) is still not comparable to that of the Global Positioning System because of the unfavorable geometry of the BDS and the uneven distribution of BDS ground monitoring stations. Fortunately, low Earth orbit (LEO) satellites, serving as fast moving stations, can efficiently improve BDS geometry. Nearly all studies on Global Navigation Satellite System POD enhancement using large LEO constellations are based on simulations and their results are usually overly optimistic. The receivers mounted on a spacecraft or an LEO satellite are usually different from geodetic receivers and the observation conditions in space are more challenging than those on the ground. The noise level of spaceborne observations needs to be carefully calibrated. Moreover, spaceborne observational errors caused by space weather events, i.e., solar geomagnetic storms, are usually ignored. Accordingly, in this study, the actual spaceborne observation noises are first analyzed and then used in subsequent observation simulations. Then, the observation residuals from the actual-processed LEO POD during a solar storm on 8 September 2017 are extracted and added to the simulated spaceborne observations. The effect of the observational errors on the BDS POD augmented with different LEO constellation configurations is analyzed. The results indicate that the noise levels from the Swarm-A, GRACE-A, and Sentinel-3A satellites are different and that the carrier-phase measurement noise ranges from 2 mm to 6 mm. Such different noise levels for LEO spaceborne observations cause considerable differences in the BDS POD solutions. Experiments calculating the augmented BDS POD for different LEO constellations considering spaceborne observational errors extracted from the solar storm indicate that these errors have a significant influence on the accuracy of the BDS POD. The 3D root mean squares of the BDS GEO, IGSO, and MEO satellite orbits are 1.30 m, 1.16 m, and 1.02 m, respectively, with a Walker 2/1/0 LEO constellation, and increase to 1.57 m, 1.72 m, and 1.32 m, respectively, with a Walker 12/3/1 constellation. When the number of LEO satellites increases to 60, the precision of the BDS POD improves significantly to 0.89 m, 0.77 m, and 0.69 m for the GEO, IGSO, and MEO satellites, respectively. While 12 satellites are sufficient to enhance the BDS POD to the sub-decimeter level, up to 60 satellites can effectively reduce the influence of large spaceborne observational errors, i.e., from solar storms.


2019 ◽  
Vol 11 (18) ◽  
pp. 2117 ◽  
Author(s):  
Li ◽  
Jiang ◽  
Ma ◽  
Lv ◽  
Yuan ◽  
...  

Traditional precise orbit determination (POD) for low Earth orbit (LEO) satellites relies on observations from ground stations and onboard receivers. Although the accuracy can reach centimeter level, there are still problems such as insufficient autonomous operation capability. The inter-satellite link (ISL) is a link used for communication between satellites and has a function of dual-way ranging. Numerous studies have shown that observational data using ISLs can be adopted for POD of navigation satellites. In this contribution, we mainly focus on LEO satellites POD with ISLs. First, we design LEO constellations with different numbers of satellites and ISL measurements, based on which the constellations are simulated. Then rough tests of POD using different link topologies are carried out. The results show that in the 60-LEO constellation the average 3-dimensional (3D) orbital errors are 0.112 m using “4-connected” link topology with constant 4 links per satellite and 0.069 m using “all-connected” link topology with theoretically maximum numbers of links. After that, we carry out refined POD experiments with several sets of satellite numbers and different observation accuracy. The results show the higher link ranging accuracy and the more numbers of links bring higher POD precision. POD with ISLs gets bad performance in the case of center of gravity reference when link ranging accuracy is poor and numbers of links are small. When the link accuracy is 40 cm, average 3D orbital errors of 60-LEO constellation are 0.358 m, which can only meet the demand of autonomous navigation. With the constraint of the right ascension of the ascending node (RAAN), POD using ISLs reaches an extremely high precision when adopting a spatial reference provided by navigation satellites. For 120-LEO constellation, the average 3D orbital errors are 0.010 m; for 192-LEO constellation, the errors are 0.006 m.


2019 ◽  
Vol 11 (16) ◽  
pp. 1949 ◽  
Author(s):  
Xiaolei Dai ◽  
Yidong Lou ◽  
Zhiqiang Dai ◽  
Caibo Hu ◽  
Yaquan Peng ◽  
...  

Precise orbit products are essential and a prerequisite for global navigation satellite system (GNSS) applications, which, however, are unavailable or unusable when satellites are undertaking maneuvers. We propose a clock-constrained reverse precise point positioning (RPPP) method to generate the rather precise orbits for GNSS maneuvering satellites. In this method, the precise clock estimates generated by the dynamic precise orbit determination (POD) processing before maneuvering are modeled and predicted to the maneuvering periods and they constrain the RPPP POD during maneuvering. The prediction model is developed according to different clock types, of which the 2-h prediction error is 0.31 ns and 1.07 ns for global positioning system (GPS) Rubidium (Rb) and Cesium (Cs) clocks, and 0.45 ns and 0.60 ns for the Beidou navigation satellite system (BDS) geostationary orbit (GEO) and inclined geosynchronous orbit (IGSO)/Median Earth orbit (MEO) satellite clocks, respectively. The performance of this proposed method is first evaluated using the normal observations without maneuvers. Experiment results show that, without clock-constraint, the average root mean square (RMS) of RPPP orbit solutions in the radial, cross-track and along-track directions is 69.3 cm, 5.4 cm and 5.7 cm for GPS satellites and 153.9 cm, 12.8 cm and 10.0 cm for BDS satellites. When the constraint of predicted satellite clocks is introduced, the average RMS is dramatically reduced in the radial direction by a factor of 7–11, with the value of 9.7 cm and 13.4 cm for GPS and BDS satellites. At last, the proposed method is further tested on the actual GPS and BDS maneuver events. The clock-constrained RPPP POD solution is compared to the forward and backward integration orbits of the dynamic POD solution. The resulting orbit differences are less than 20 cm in all three directions for GPS satellite, and less than 30 cm in the radial and cross-track directions and up to 100 cm in the along-track direction for BDS satellites. From the orbit differences, the maneuver start and end time is detected, which reveals that the maneuver duration of GPS satellites is less than 2 min, and the maneuver events last from 22.5 min to 107 min for different BDS satellites.


2020 ◽  
Vol 3 (1) ◽  
pp. 316-321
Author(s):  
Sermet Ogutcu ◽  
Salih Alcay ◽  
Omer Faruk Atiz

In recent years, the advances of the new Global Navigation Satellite System (GNSS) constellations including, Galileo and BeiDou (BDS), have undergone dramatic changes. Some analysis centers (ACs) produce precise orbit and clock products of Galileo and BeiDou constellations. Currently, three types of Galileo and BeiDou satellite orbit and clock products are available – namely, precise, rapid and ultra-rapid products –. Ultra-rapid and rapid products are generally used for time-constrained applications. Precise orbit determination (POD) of Galileo and BeiDou is much challenging compared with GPS and GLONASS constellations due to the officially undetermined receiver phase center offset (PCO), variations (PCV) of Galileo and BeiDou constellations and, also some other not well-defined factors such as yaw-attitude models and solar radiation pressure. In this study, GALILEO orbit accuracy is investigated using rapid products produced by Center for Orbit Determination in Europe (CODE) GeoForschungsZentrum (GFZ) and Wuhan University (WUHAN), while GFZ and WUHAN rapid products are used for BeiDou constellation only. One month (January) of data in 2020 is used to compute errors of radial, along-track, and cross-track components of Galileo and BeiDou orbit derived by rapid products compared with the CODE final Multi-GNSS Experiment (MGEX) product which is assumed as the reference product. The results show that no significant differences between the products are found for Galileo orbit. For BeiDou orbit, WUHAN rapid product produced the smaller root mean square errors (RMSEs) of orbit components compared with the GFZ rapid product.


Sensors ◽  
2013 ◽  
Vol 13 (3) ◽  
pp. 2911-2928 ◽  
Author(s):  
Lina He ◽  
Maorong Ge ◽  
Jiexian Wang ◽  
Jens Wickert ◽  
Harald Schuh

2017 ◽  
Vol 11 (3) ◽  
Author(s):  
Kai Li ◽  
Xuhua Zhou ◽  
Nannan Guo ◽  
Gang Zhao ◽  
Kexin Xu ◽  
...  

AbstractZero-difference kinematic, dynamic and reduced-dynamic precise orbit determination (POD) are three methods to obtain the precise orbits of Low Earth Orbit satellites (LEOs) by using the on-board GPS observations. Comparing the differences between those methods have great significance to establish the mathematical model and is usefull for us to select a suitable method to determine the orbit of the satellite. Based on the zero-difference GPS carrier-phase measurements, Shanghai Astronomical Observatory (SHAO) has improved the early version of SHORDE and then developed it as an integrated software system, which can perform the POD of LEOs by using the above three methods. In order to introduce the function of the software, we take the Gravity Recovery And Climate Experiment (GRACE) on-board GPS observations in January 2008 as example, then we compute the corresponding orbits of GRACE by using the SHORDE software. In order to evaluate the accuracy, we compare the orbits with the precise orbits provided by Jet Propulsion Laboratory (JPL). The results show that: (1) If we use the dynamic POD method, and the force models are used to represent the non-conservative forces, the average accuracy of the GRACE orbit is 2.40cm, 3.91cm, 2.34cm and 5.17cm in radial (R), along-track (T), cross-track (N) and 3D directions respectively; If we use the accelerometer observation instead of non-conservative perturbation model, the average accuracy of the orbit is 1.82cm, 2.51cm, 3.48cm and 4.68cm in R, T, N and 3D directions respectively. The result shows that if we use accelerometer observation instead of the non-conservative perturbation model, the accuracy of orbit is better. (2) When we use the reduced-dynamic POD method to get the orbits, the average accuracy of the orbit is 0.80cm, 1.36cm, 2.38cm and 2.87cm in R, T, N and 3D directions respectively. This method is carried out by setting up the pseudo-stochastic pulses to absorb the errors of atmospheric drag and other perturbations. (3) If we use the kinematic POD method, the accuracy of the GRACE orbit is 2.92cm, 2.48cm, 2.76cm and 4.75cm in R, T, N and 3D directions respectively. In conclusion, it can be seen that the POD of GRACE satellite is practicable by using different strategies and methods. The orbit solution is well and stable, they all can obtain the GRACE orbits with centimeter-level precision.


Aerospace ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 25
Author(s):  
Zhiyu Wang ◽  
Zishen Li ◽  
Ningbo Wang ◽  
Mainul Hoque ◽  
Liang Wang ◽  
...  

The real-time integer-ambiguity resolution of the carrier-phase observation is one of the most effective approaches to enhance the accuracy of real-time precise point positioning (PPP), kinematic precise orbit determination (KPOD), and reduced-dynamic precise orbit determination (RPOD) for low earth orbit (LEO) satellites. In this study, the integer phase clock (IPC) and wide-lane satellite bias (WSB) products from CNES (Centre National d’Etudes Spatiales) are used to fix ambiguity in real time. Meanwhile, the three models of real-time PPP, KPOD, and RPOD are applied to validate the contribution of ambiguity resolution. Experimental results show that (1) the average positioning accuracy of IGS stations for ambiguity-fixed solutions is improved from about 7.14 to 5.91 cm, with an improvement of around 17% compared to the real-time float PPP solutions, with enhancement in the east-west direction particularly significant, with an improvement of about 29%; (2) the average accuracy of the estimated LEO orbit with ambiguity-fixed solutions in the real-time KPOD and RPOD mode is improved by about 16% and 10%, respectively, with respect to the corresponding mode with the ambiguity-float solutions; (3) the performance of real-time LEO RPOD is better than that of the corresponding KPOD, regardless of fixed- or float-ambiguity solutions. Moreover, the average ambiguity-fixed ratio can reach more than 90% in real-time PPP, KPOD, and RPOD.


Sign in / Sign up

Export Citation Format

Share Document