scholarly journals Impact of Timanian thrusts on the Phanerozoic tectonic history of Svalbard

Author(s):  
Jean-Baptiste Koehl

<p>Despite more than a century of investigation, the relationship between basement rocks throughout the Svalbard Archipelago is still a mystery. Though these rocks display similar geochronological ages, they show significantly different metamorphic grades and structures. Thus far, Svalbard was believed to be composed of three terranes of rocks formed hundreds–thousands of kilometers apart and accreted in the mid-Paleozoic during the Caledonian and Ellesmerian orogenies.</p><p>New evidence from seismic, gravimetric, aeromagnetic, seismological, bathymetric, and field data show that these terranes might have already been juxtaposed in the late Neoproterozoic. Notably, the data show that at least three–four, crustal-scale, WNW–ESE-striking fault systems segment Spitsbergen and merge with Timanian thrusts in the northern Barents Sea and northwestern Russia. These thrusts were reactivated as and/or overprinted by sinistral-reverse oblique-slip faults and partly folded during the Caledonian Orogeny and Eurekan tectonic event, and reactivated as and/or overprinted by sinistral-normal faults during Devonian–Mississippian extensional collapse of the Caledonides, thus offsetting N–S-trending Caledonian grain and post-Caledonian basins, and explaining the juxtaposition of basement rocks with seemingly different origin.</p><p>The presence of Timanian faults explains basement heterogeneities throughout the Svalbard Archipelago, strain partitioning during the Caledonian Orogeny and Eurekan tectonic event and, thus, the western vergence of early Cenozoic folds in Devonian rocks in central–northern Spitsbergen (previously ascribed to the Late Devonian Ellesmerian Orogeny) and the arch shape of the early Cenozoic West Spitsbergen Fold-and-Thrust Belt in Brøggerhalvøya, the distribution of Mississippian rocks and Early Cretaceous intrusions along a WNW–ESE-trending axis in central Spitsbergen, the transport of Svalbard in the Cenozoic from next to Greenland to its present position (c. 400 km southwards), the strike and location of transform faults and oceanic core complexes and gas leakage along the Vestnesa Ridge west of Spitsbergen, the continental nature and NW–SE strike of basement fabrics in the Hovgård Ridge between Greenland and Svalbard, and the occurrence of recent (< 100 years old) earthquakes in Storfjorden and Heer Land in eastern Svalbard.</p><p>Further implications of this work are that the tectonic plates constituting present-day Arctic regions (Laurentia and Baltica) have retained their current geometry for the past 600 Ma, that the Timanian Orogeny extended from northwestern Russia to Svalbard, Greenland and, potentially, Arctic Canada, that the De Geer Zone does not exist, that the Billefjorden Fault Zone (Svalbard) and the Great Glen Fault (Scotland) were not part of the same fault complex, and that the Harder Fjord Fault Zone (northern Greenland) possibly initiated (or was reactivated) as a Timanian thrust.</p>

Solid Earth ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. 341-372 ◽  
Author(s):  
Jean-Baptiste P. Koehl ◽  
Steffen G. Bergh ◽  
Tormod Henningsen ◽  
Jan Inge Faleide

Abstract. The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle–Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, (i) the Måsøy Fault Complex, (ii) the Rolvsøya fault, and (iii) the Troms–Finnmark Fault Complex. We discuss the formation of the Måsøy Fault Complex as a possible extensional splay of an overall NE–SW-trending, NW-dipping, basement-seated Caledonian shear zone, the Sørøya–Ingøya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top–NW normal displacement in Middle to Late Devonian–Carboniferous times. The Troms–Finnmark Fault Complex displays a zigzag-shaped pattern of NNE–SSW- and ENE–WSW-trending extensional faults before it terminates to the north as a WNW–ESE-trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the western Finnmark Platform and the Gjesvær Low in the southwest. The WNW–ESE-trending, margin-oblique segment of the Troms–Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjorden–Komagelva Fault Zone, which is made of WNW–ESE-trending, subvertical faults that crop out on the island of Magerøya in NW Finnmark. Our results suggest that the Trollfjorden–Komagelva Fault Zone dies out to the northwest before reaching the western Finnmark Platform. We propose an alternative model for the origin of the WNW–ESE-trending segment of the Troms–Finnmark Fault Complex as a possible hard-linked, accommodation cross fault that developed along the Sørøy–Ingøya shear zone. This brittle fault decoupled the western Finnmark Platform from the southwesternmost Nordkapp basin and merged with the Måsøy Fault Complex in Carboniferous times. Seismic data over the Gjesvær Low and southwesternmost Nordkapp basin show that the low-gravity anomaly observed in these areas may result from the presence of Middle to Upper Devonian sedimentary units resembling those in Middle Devonian, spoon-shaped, late- to post-orogenic collapse basins in western and mid-Norway. We propose a model for the formation of the southwesternmost Nordkapp basin and its counterpart Devonian basin in the Gjesvær Low by exhumation of narrow, ENE–WSW- to NE–SW-trending basement ridges along a bowed portion of the Sørøya-Ingøya shear zone in the Middle to Late Devonian–early Carboniferous. Exhumation may have involved part of a large-scale metamorphic core complex that potentially included the Lofoten Ridge, the West Troms Basement Complex and the Norsel High. Finally, we argue that the Sørøya–Ingøya shear zone truncated and decapitated the Trollfjorden–Komagelva Fault Zone during the Caledonian Orogeny and that the western continuation of the Trollfjorden–Komagelva Fault Zone was mostly eroded and potentially partly preserved in basement highs in the SW Barents Sea.


2020 ◽  
Author(s):  
Jean-Baptiste P. Koehl

Abstract. In the Late Devonian, Svalbard was affected by a short-lived episode of contraction called the Ellesmerian (Svalbardian) Orogeny, which resulted in top-west thrusting of Proterozoic basement rocks onto Devonian sedimentary strata along the Balliolbreen Fault, a major fault segment of the east-dipping Billefjorden Fault Zone, and juxtaposition of undeformed Mississippian–Permian strata against intensely folded Devonian rocks. The present study of field and seismic data shows that backward-dipping duplexes comprised of phyllitic coal and bedding-parallel décollements and thrusts localized along lithological transitions in thickened uppermost Devonian–Mississippian coals and coaly shales of the Billefjorden Group partially decoupled uppermost Devonian–Permian sedimentary rocks of the Billefjorden and Gipsdalen groups from Devonian rocks during Cenozoic contraction–transpression. In addition, Devonian strata probably experienced syn-depositional, post-Caledonian, extensional, detachment-related folding. Seismic data in Sassenfjorden and Reindalspasset show the presence of Cenozoic duplexes and bedding-parallel décollements within Lower–Middle Devonian, uppermost Devonian–Mississippian and uppermost Pennsylvanian–lowermost Permian sedimentary strata of the Wood Bay and/or Widje Bay and/or Grey Hoek formations, of the Billefjorden Group and of the Wördiekammen Formation respectively, which further decoupled stratigraphic units during Eurekan deformation. Bedding-parallel décollements and thrusts are possibly related to shortcut faulting, a roof décollement of a fault-bend hanging wall (or ramp) anticline, an imbricate fan, antiformal thrust stacks and/or fault-propagation folds over reactivated/overprinted basement-seated faults. Seismic data in Reindalspasset also indicate that Devonian sedimentary rocks might have deposited east of the Billefjorden Fault Zone, thus ruling out Late Devonian reverse movement along the Billefjorden Fault Zone in this area. Based on the present findings, juxtaposition of Proterozoic basement rocks against Lower Devonian sedimentary rocks along the Balliolbreen Fault in central Spitsbergen (e.g., Pyramiden–Odellfjellet) may be explained by down-east Carboniferous normal faulting with associated footwall rotation and exhumation and subsequent top-west Cenozoic thrusting along the Billefjorden Fault Zone. The uncertain relationship of the Balliolbreen Fault with uppermost Devonian–Mississippian sedimentary strata, the poorly constrained nature of the contact (unconformity or bedding-parallel décollements and thrusts?) between Lower Devonian and uppermost Devonian–Mississippian sedimentary strata, and along strike variations in cross-section geometry, offset stratigraphy, and inferred timing and kinematics along the Balliolbreen Fault suggest that this fault consists of several, discrete, unconnected (soft-linked and/or stepping) or, most probably, offset fault segments that were reactivated/overprinted with varying degree during Eurekan deformation due to strain partitioning. Finally, recent evidence for Devonian core complex exhumation and reinterpretation of presumed Ellesmerian structures and of Late Devonian amphibolite facies metamorphism suggest that Ellesmerian contraction is not necessary to explain fault geometries and (differential) deformation within Devonian–Permian sedimentary strata in Spitsbergen.


2020 ◽  
Author(s):  
Jean-Baptiste P. Koehl

Abstract. The present study of field, petrological, exploration well and seismic data shows that backward-dipping duplexes comprised of phyllitic coal and bedding-parallel décollements and thrusts, which localized along lithological transitions in tectonically thickened Lower–lowermost Upper Devonian, uppermost Devonian–Mississippian and uppermost Pennsylvanian–lowermost Permian sedimentary strata of the Wood Bay and/or Widje Bay and/or Grey Hoek formations, of the Billefjorden Group and of the Wordiekammen Formation respectively, partially decoupled uppermost Devonian–Permian sedimentary rocks of the Billefjorden and Gipsdalen groups from Lower–lowermost Upper Devonian rocks of the Andrée Land Group and Mimerdalen Subgroup during early Cenozoic Eurekan deformation in central Spitsbergen. Eurekan strain decoupling along these structures explains differential deformation between Lower–lowermost Upper Devonian rocks of the Andrée Land Group/Mimerdalen Subgroup and overlying uppermost Devonian–Permian sedimentary strata of the Billefjorden and Gipsdalen groups in central–northern Spitsbergen without requiring an episode of (Ellesmerian) contraction in the Late Devonian. Potential formation mechanisms for bedding-parallel décollements and thrusts include shortcut faulting, and/or formation as a roof décollement in a fault-bend hanging wall (or ramp) anticline, as an imbricate fan, as an antiformal thrust stack, and/or as fault-propagation folds over reactivated/overprinted basement-seated faults. The interpretation of seismic data in Reindalspasset indicates that Devonian sedimentary rocks of the Andrée Land Group and Mimerdalen Subgroup might be preserved east of the Billefjorden Fault Zone, suggesting that the Billefjorden Fault Zone did not accommodate reverse movement in the Late Devonian. Hence, the thrusting of Proterozoic basement rocks over Lower Devonian sedimentary rocks along the Balliolbreen Fault and fold structures within strata of the Andrée Land Group and Mimerdalen Subgroup in central Spitsbergen may be explained by a combination of down-east Carboniferous normal faulting with associated footwall rotation and exhumation, and subsequent top-west early Cenozoic Eurekan thrusting along the Billefjorden Fault Zone. Finally, the study shows that major east-dipping faults, like the Billefjorden Fault Zone, may consists of several, discrete, unconnected (soft-linked and/or stepping) or, most probably, offset fault segments that were reactivated/overprinted with varying degree during Eurekan deformation due to strain partitioning and/or decoupling along sub-orthogonal NNE-dipping reverse faults.


Solid Earth ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 85-115
Author(s):  
Jean-Baptiste P. Koehl ◽  
Craig Magee ◽  
Ingrid M. Anell

Abstract. The Svalbard Archipelago consists of three basement terranes that record a complex Neoproterozoic–Phanerozoic tectonic history, including four contractional events (Grenvillian, Caledonian, Ellesmerian, and Eurekan) and two episodes of collapse- to rift-related extension (Devonian–Carboniferous and late Cenozoic). Previous studies suggest that these three terranes likely accreted during the early to mid-Paleozoic Caledonian and Ellesmerian orogenies. Yet recent geochronological analyses show that the northwestern and southwestern terranes of Svalbard both record an episode of amphibolite (–eclogite) facies metamorphism in the latest Neoproterozoic, which may relate to the 650–550 Ma Timanian Orogeny identified in northwestern Russia, northern Norway, and the Russian Barents Sea. However, discrete Timanian structures have yet to be identified in Svalbard and the Norwegian Barents Sea. Through analysis of seismic reflection, as well as regional gravimetric and magnetic data, this study demonstrates the presence of continuous thrust systems that are several kilometers thick, NNE-dipping, deeply buried, and extend thousands of kilometers from northwestern Russia to northeastern Norway, the northern Norwegian Barents Sea, and the Svalbard Archipelago. The consistency in orientation and geometry, as well as apparent linkage between these thrust systems and those recognized as part of the Timanian Orogeny in northwestern Russia and Novaya Zemlya, suggests that the mapped structures are likely Timanian. If correct, these findings would imply that Svalbard's three basement terranes and the Barents Sea were accreted onto northern Norway during the Timanian Orogeny and should hence be attached to Baltica and northwestern Russia in future Neoproterozoic–early Paleozoic plate tectonics reconstructions. In the Phanerozoic, the study suggests that the interpreted Timanian thrust systems represent major preexisting zones of weakness that were reactivated, folded, and overprinted by (i.e., controlled the formation of new) brittle faults during later tectonic events. These faults are still active at present and can be linked to folding and offset of the seafloor.


2021 ◽  
Vol 40 ◽  
Author(s):  
Jean-Baptiste Koehl ◽  
Lis Allaart

The Billefjorden Fault Zone is a major terrane boundary in the Norwegian Arctic. The fault separates basement rocks of Svalbard’s north-eastern and north-western terranes that recorded discrete Precambrian tectonothermal histories and were accreted, intensely deformed and metamorphosed during the Caledonian Orogeny. Although the fault represents a major, crustal-scale tectonic boundary, its northward extent is not well constrained. The present short contribution addresses this issue and presents new seismic mapping of structures and rock units north of Wijdefjorden, where the Billefjorden Fault Zone may continue. This study shows that there is no evidence for major faulting of the top-basement reflection, and therefore, that the Billefjorden Fault Zone may die out within Wijdefjorden–Austfjorden, step ≥ 20 km laterally, or be invisible on the presented seismic data. Seismic data also suggest that Caledonian basement rocks in Ny-Friesland (north-eastern terrane) are not significantly different from basement rocks below the Devonian Graben in Andrée Land (north-western terrane). Potential implications include the absence of a major terrane boundary in northern Spitsbergen.


Solid Earth ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 1025-1049
Author(s):  
Jean-Baptiste P. Koehl

Abstract. The present study of field, petrological, exploration well, and seismic data describes backward-dipping duplexes comprised of phyllitic coal and bedding-parallel décollements and thrusts localized along lithological transitions in tectonically thickened Lower Devonian to lowermost Upper Devonian; uppermost Devonian–Mississippian; and uppermost Pennsylvanian–lowermost Permian sedimentary strata of the Wood Bay and/or Wijde Bay and/or Grey Hoek formations; of the Billefjorden Group; and of the Wordiekammen Formation, respectively. The study shows that these structures partially decoupled uppermost Devonian–Permian sedimentary rocks of the Billefjorden and Gipsdalen groups from Lower Devonian to lowermost Upper Devonian rocks of the Andrée Land Group and Mimerdalen Subgroup during early Cenozoic Eurekan deformation in central Spitsbergen. Eurekan strain decoupling along these structures explains differential deformation between Lower Devonian to lowermost Upper Devonian rocks of the Andrée Land Group and/or Mimerdalen Subgroup and overlying uppermost Devonian–Permian sedimentary strata of the Billefjorden and Gipsdalen groups in central–northern Spitsbergen without requiring an episode of (Ellesmerian) contraction in the Late Devonian. Potential formation mechanisms for bedding-parallel décollements and thrusts include shortcut faulting and/or formation as a roof décollement in a fault-bend hanging wall (or ramp) anticline, as an imbricate fan, as an antiformal thrust stack, and/or as fault-propagation folds over reactivated or overprinted basement-seated faults. The interpretation of seismic data in Reindalspasset indicates that Devonian sedimentary rocks of the Andrée Land Group and Mimerdalen Subgroup might be preserved east of the Billefjorden Fault Zone, suggesting that the Billefjorden Fault Zone did not accommodate reverse movement in the Late Devonian. Hence, the thrusting of Proterozoic basement rocks over Lower Devonian sedimentary rocks along the Balliolbreen Fault and fold structures within strata of the Andrée Land Group and Mimerdalen Subgroup in central Spitsbergen may be explained by a combination of down-east Carboniferous normal faulting with associated footwall rotation and exhumation, and subsequent top-west early Cenozoic Eurekan thrusting along the Billefjorden Fault Zone. Finally, the study shows that major east-dipping faults, like the Billefjorden Fault Zone, may consist of several discrete, unconnected (soft-linked and/or stepping) or, most probably, offset fault segments that were reactivated or overprinted to varying degrees during Eurekan deformation due to strain partitioning and/or decoupling along sub-orthogonal NNE-dipping reverse faults.


2017 ◽  
Author(s):  
Jean-Baptiste Koehl ◽  
Steffen G. Bergh ◽  
Tormod Henningsen ◽  
Jan-Inge Faleide

Abstract. The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle-Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, i) the Måsøy Fault Complex, ii) the Rolvsøya fault, iii) the Troms-Finnmark Fault Complex. We discuss the formation of the Måsøy Fault Complex as a possible extensional splay of an overall NE-SW trending, NW-dipping, basement-seated Caledonian shear zone, the Sørøya-Ingøya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top-to-the-NW normal displacement in Mid/Late Devonian-Carboniferous times. The Troms-Finnmark Fault Complex displays a zigzag-shaped pattern of NNE-SSW and ENE-WSW trending extensional faults before it terminates to the north as a WNW-ESE trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the Finnmark Platform west and the Gjesvær Low in the southwest. The WNW-ESE trending, margin-oblique segment of the Troms-Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjord-Komagelv Fault Zone, which is made of WNW-ESE trending, subvertical faults that crop out on the island of Magerøya in NW Finnmark. Our results suggest that the Trollfjord-Komagelv Fault Zone dies out to the northwest before reaching the Finnmark Platform west. We propose an alternative model for the origin of the WNW-ESE trending fault segment of the Troms-Finnmark Fault Complex as a possible hard-linked, accommodation cross-fault that developed along the Sørøy-Ingøya shear zone. This brittle fault decoupled the Finnmark Platform west from the southwesternmost Nordkapp basin and merged with the Måsøy Fault Complex in Carboniferous times. Seismic data over the Gjesvær Low and southwesternmost Nordkapp basin show that the low-gravity anomaly observed in these areas may result from the presence of Mid/Late Devonian sedimentary units resembling Middle Devonian, spoon-shaped, late/post-orogenic collapse basins in western and mid Norway. We propose a model for the formation of the southwesternmost Nordkapp basin and its counterpart Devonian basin in the Gjesvær Low by exhumation of narrow, ENE-WSW to NE-SW trending basement ridges along a bowed portion of the Sørøya-Ingøya shear zone in the Mid/Late Devonian-early Carboniferous. Exhumation may have involved part of a large-scale metamorphic core complex that potentially included the Lofoten Ridge, the West Troms Basement Complex and the Norsel High. Finally, we argue that the Sørøya-Ingøya shear zone truncated and decapitated the Trollfjord-Komagelv Fault Zone during the Caledonian Orogeny and that the western continuation of the Trollfjord-Komagelv Fault Zone was mostly eroded and potentially partly preserved in basement highs in the SW Barents Sea.


2021 ◽  
Author(s):  
Jean-Baptiste P. Koehl ◽  
Craig Magee ◽  
Ingrid M. Anell

Abstract. The Svalbard Archipelago is composed of three basement terranes that record a complex Neoproterozoic–Phanerozoic tectonic history, including four contractional events (Grenvillian, Caledonian, Ellesmerian, and Eurekan) and two episodes of collapse- to rift-related extension (Devonian–Carboniferous and late Cenozoic). These three terranes are thought to have accreted during the early–mid Paleozoic Caledonian and Ellesmerian orogenies. Yet recent geochronological analyses show that the northwestern and southwestern terranes of Svalbard both record an episode of amphibolite (–eclogite) facies metamorphism in the latest Neoproterozoic, which may relate to the 650–550 Ma Timanian Orogeny identified in northwestern Russia, northern Norway and the Russian Barents Sea. However, discrete Timanian structures have yet to be identified in Svalbard and the Norwegian Barents Sea. Through analysis of seismic reflection, and regional gravimetric and magnetic data, this study demonstrates the presence of continuous, several kilometers thick, NNE-dipping, deeply buried thrust systems that extend thousands of kilometers from northwestern Russia to northeastern Norway, the northern Norwegian Barents Sea, and the Svalbard Archipelago. The consistency in orientation and geometry, and apparent linkage between these thrust systems and those recognized as part of the Timanian Orogeny in northwestern Russia and Novaya Zemlya suggests that the mapped structures are likely Timanian. If correct, these findings would indicate that Svalbard’s three basement terranes and the Barents Sea were accreted onto northern Norway during the Timanian Orogeny and should, hence, be attached to Baltica and northwestern Russia in future Neoproterozoic–early Paleozoic plate tectonics reconstructions. In the Phanerozoic, the study suggests that the interpreted Timanian thrust systems represented major preexisting zones of weakness that were reactivated, folded, and overprinted by (i.e., controlled the formation of new) brittle faults during later tectonic events. These faults are still active at present and can be linked to folding and offset of the seafloor.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 40
Author(s):  
Evgeny Genelt-Yanovskiy ◽  
Yixuan Li ◽  
Ekaterina Stratanenko ◽  
Natalia Zhuravleva ◽  
Natalia Strelkova ◽  
...  

Ophiura sarsii is a common brittle star species across the Arctic and Sub-Arctic regions of the Atlantic and the Pacific oceans. Ophiurasarsii is among the dominant echinoderms in the Barents Sea. We studied the genetic diversity of O.sarsii by sequencing the 548 bp fragment of the mitochondrial COI gene. Ophiurasarsii demonstrated high genetic diversity in the Barents Sea. Both major Atlantic mtDNA lineages were present in the Barents Sea and were evenly distributed between the northern waters around Svalbard archipelago and the southern part near Murmansk coast of Kola Peninsula. Both regions, and other parts of the O.sarsii range, were characterized by high haplotype diversity with a significant number of private haplotypes being mostly satellites to the two dominant haplotypes, each belonging to a different mtDNA clade. Demographic analyses indicated that the demographic and spatial expansion of O.sarsii in the Barents Sea most plausibly has started in the Bølling–Allerød interstadial during the deglaciation of the western margin of the Barents Sea.


Polar Biology ◽  
2022 ◽  
Author(s):  
Rui Peres dos Santos ◽  
Rafael Martins ◽  
Anton Chaiko ◽  
Ted Cheeseman ◽  
Lindsey S. Jones ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document