On monsoon character of circulation over the Barents and Kara Seas

Author(s):  
Alexander Kislov ◽  
Tatiana Matveeva

<p>This study analysed the monsoon features of atmospheric circulation in the Barents and Kara Seas, the variability of atmospheric circulation, and anomalies in temperature, precipitation, and wind speed. In a cold period, the extreme winds are southerly winds that develop in the eastern parts of cyclones. In the warm season, the extreme speeds correspond to a northerly wind in the western periphery of cyclones. The regional circulation systems were divided into ten circulation weather types, separately for each sea. Their frequencies were compared with different indexes, describing the main modes of variability for the arctic region (the North Atlantic Oscillation, the summer North Atlantic Oscillation, the Scandinavia teleconnection pattern, the Siberian High). In the winter season, the monsoon currents from land to sea occur only when the North Atlantic Oscillation index is positive. With the prevalence of other modes of variability, the direction of the winds can be different, and this causes the monsoon regularity to be stochastic. In summer, the northern streams move on the western periphery of cyclones, regenerating and stabilizing over the Kara Sea.</p><p>The work was supported by the grant of the Russian Foundation for Basic Research (RFBR) [project number 18-05-60147] and this work was carried out as part of governmental assignment АААА-А16-116032810086-4.</p>

Harmful Algae ◽  
2014 ◽  
Vol 39 ◽  
pp. 121-126 ◽  
Author(s):  
José C. Báez ◽  
Raimundo Real ◽  
Victoria López-Rodas ◽  
Eduardo Costas ◽  
A. Enrique Salvo ◽  
...  

2018 ◽  
Vol 57 (4) ◽  
pp. 921-935 ◽  
Author(s):  
Jonathan Edwards-Opperman ◽  
Steven Cavallo ◽  
David Turner

AbstractStratiform liquid-bearing clouds (LBCs), defined herein as either pure liquid or mixed-phase clouds, have a large impact on the surface radiation budget across the Arctic. LBCs lasting at least 6 h are observed at Summit, Greenland, year-round with a maximum in occurrence during summer. Mean cloud-base height is below 1 km for 85% of LBC cases identified, 59% have mean liquid water path (LWP) values between 10 and 40 g m−2, and most produce sporadic light ice-phase precipitation. During their occurrence, the atmosphere above the ice sheet is anomalously warm and moist, with southerly winds observed over much of the ice sheet, including at Summit. LBCs that occur when the North Atlantic Oscillation (NAO) is in the negative phase correspond to strong ridging centered over the Greenland Ice Sheet (GIS), allowing for southwesterly flow over the GIS toward Summit. During the positive phase of the NAO, the occurrence of LBCs corresponds to a cyclone located off the southeastern coast of the ice sheet, which leads to easterly-to-southeasterly flow toward Summit. Furthermore, air parcels at Summit frequently originate from below the elevation of Summit, indicating that orographic lift along the ice sheet is a factor in the occurrence of LBCs at Summit. LBCs are more frequently observed during the negative NAO, and both the LWP and precipitation rate are larger in LBCs occurring during this phase. Mean LWP in LBCs occurring during the negative NAO is 15 g m−2 larger than in LBCs occurring during the positive phase.


2012 ◽  
Vol 12 (2) ◽  
pp. 869-877 ◽  
Author(s):  
T. Christoudias ◽  
A. Pozzer ◽  
J. Lelieveld

Abstract. We examined the influence of the North Atlantic Oscillation (NAO) on the atmospheric dispersion of pollution by computing the emission, transport and removal of idealized insoluble gaseous and water-soluble aerosol tracers, tagged by the continent of origin. We simulated a period of 50 yr (1960–2010), using the ECHAM5/MESSy1 atmospheric chemistry (EMAC) general circulation model. The model accounts for anthropogenic, biogenic and biomass burning sources, removal of trace gases through OH oxidation, and precipitation, sedimentation and deposition of aerosols. The model is shown to reproduce the observed spatial features of the NAO, moisture transports and precipitation. During high NAO phase seasons the axis of maximum westerly North American trace gas transports extends relatively far to the north and east over Europe. The NAO phase is significantly correlated with North American insoluble gas and soluble aerosol tracer concentrations over the northwestern Atlantic Ocean and across northern Europe, and with European trace gases and aerosols over Africa and north of the Arctic circle. We find a strong anti-correlation between the phase of the NAO and European pollutant gas concentration over western and central Europe.


2017 ◽  
Author(s):  
Lars Norin ◽  
Abhay Devasthale ◽  
Tristan S. L'Ecuyer

Abstract. For a high latitude country like Sweden snowfall is an important contributor to the regional water cycle. Furthermore, snowfall impacts surface properties, affects atmospheric thermodynamics, has implications for traffic and logistics management, disaster preparedness, and also impacts climate through changes in surface albedo and turbulent heat fluxes. For Sweden it has been shown that large-scale atmospheric circulation patterns, or weather states, are important for precipitation variability. Although the link between atmospheric circulation patterns and precipitation has been investigated for rainfall there are no studied focused on the sensitivity of snowfall to weather states over Sweden. In this work we investigate the response of snowfall to eight selected weather states. These weather states consist of four dominant wind directions together with cyclonic and anti-cyclonic circulation patterns and enhanced positive and negative phases of the North Atlantic oscillation. The presented analysis is based on multiple data sources, such as ground-based radar measurements, satellite observations, spatially-interpolated in situ observations, and reanalysis data. The data from these sources converge to underline the sensitivity of falling snow over Sweden to the different weather states. In this paper we examine both average snowfall intensities and snowfall accumulations associated with the different weather states. It is shown that even though the heaviest snowfall intensities occur during conditions with winds from the southwest, the largest contribution to snowfall accumulation arrives from winds from the southeast. Large differences in snowfall due to variations in the North Atlantic oscillation are shown as well as a strong effect of cyclonic and anti-cyclonic circulation patterns. Satellite observations are used to reveal the vertical structures of snowfall during the different weather states.


2011 ◽  
Vol 11 (9) ◽  
pp. 25967-25989
Author(s):  
T. Christoudias ◽  
A. Pozzer ◽  
J. Lelieveld

Abstract. We examined the influence of the North Atlantic Oscillation (NAO) on the atmospheric dispersion of pollution by computing the emission, transport and removal of insoluble gaseous and water-soluble aerosol tracers, tagged by the continent of origin. We simulated a period of 50 yr (1960–2010), using the ECHAM/MESSy atmospheric chemistry (EMAC) general circulation model. The model accounts for anthropogenic, biogenic and biomass burning sources, removal of trace gases through OH oxidation, and precipitation, sedimentation and deposition of aerosols. The model is shown to reproduce the observed spatial features of the NAO, moisture transports and precipitation. During high NAO phase seasons the axis of maximum westerly North American trace gas transports extends relatively far to the north and east over Europe. The NAO phase is significantly correlated with North American tracer concentrations over the northwestern Atlantic Ocean and across northern Europe, and with European trace gases and aerosols beyond the arctic circle. Our results indicate marked differences and partly reversed correlations for the insoluble gas and the soluble aerosol tracers. We find a strong anti-correlation over western and central Europe between European pollutant gas and aerosol concentrations and the phase of the NAO.


2011 ◽  
Vol 42 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Dariusz Wrzesiński ◽  
Rafał Paluszkiewicz

The article presents regional differences in the impact that the North Atlantic Oscillation (NAO) exerts on the flow of European rivers. The impact is determined by temporal variations in the strength of relations expressed by coefficients of correlation between monthly or seasonal NAO indices and discharges recorded at 510 river profiles. The results of the correlation analysis were arranged using Ward’s method of hierarchical grouping. The classification of river profiles thus obtained made it possible to distinguish seven regions differing in the nature of the dependence between streamflow and the intensity of the NAO. The most statistically significant positive correlations are displayed by the rivers of Fennoscandia, Denmark and the northwest part of the British Isles in the winter period, while the most significant negative correlations (also in winter) are recorded for streams of the Mediterranean Basin, western France and the southeast of England. In the southeast part of the Baltic Sea drainage basin, significant positive correlations of streamflow with the NAO indices can be observed in the winter season and negative correlations are observed in spring.


2009 ◽  
Vol 22 (2) ◽  
pp. 364-380 ◽  
Author(s):  
Hai Lin ◽  
Gilbert Brunet ◽  
Jacques Derome

Abstract Based on the bivariate Madden–Julian oscillation (MJO) index defined by Wheeler and Hendon and 25 yr (1979–2004) of pentad data, the association between the North Atlantic Oscillation (NAO) and the MJO on the intraseasonal time scale during the Northern Hemisphere winter season is analyzed. Time-lagged composites and probability analysis of the NAO index for different phases of the MJO reveal a statistically significant two-way connection between the NAO and the tropical convection of the MJO. A significant increase of the NAO amplitude happens about 5–15 days after the MJO-related convection anomaly reaches the tropical Indian Ocean and western Pacific region. The development of the NAO is associated with a Rossby wave train in the upstream Pacific and North American region. In the Atlantic and African sector, there is an extratropical influence on the tropical intraseasonal variability. Certain phases of the MJO are preceded by the occurrence of strong NAOs. A significant change of upper zonal wind in the tropical Atlantic is caused by a modulated transient westerly momentum flux convergence associated with the NAO.


2021 ◽  
Vol 8 (1) ◽  
pp. 45
Author(s):  
Graciela González ◽  
Amílcar Calzada ◽  
Alejandro Rodríguez

There have been several advances in understanding the North Atlantic Oscillation (NAO), but there are still uncertainties regarding its level of influence on the tropical climate. That is why this work determines the influence of the NAO on the main hydrometeorological events that affected Cuba in the 1999–2016 period. To comply with this, a regression analysis is carried out in the CurveExpert software where the combined influence of the NAO and El Niño-Southern Oscillation on hydrometeorological events is also examined. It was found that the NAO exerts a greater influence on Cuba when it is in its negative phase during the winter season.


2020 ◽  
Author(s):  
Hera Guðlaugsdóttir ◽  
Jesper Sjolte ◽  
Árný Erla Sveinbjörnsdóttir ◽  
Hans Christian Steen-Larsen

Abstract Volcanic eruptions are important drivers of climate variability on both seasonal and multi-decadal time scales as a result of atmosphere-ocean coupling. While the direct response after equatorial eruptions emerges as the positive phase of the North Atlantic Oscillation in the first two years after an eruption, less is known about high latitude northern hemisphere eruptions. In this study we assess the difference between equatorial and high latitude volcanic eruptions through the reconstructed atmospheric circulation and stable water isotope records of Greenland ice cores for the last millennia (1241-1979 CE), where the coupling mechanism behind the long-term response is addressed. The atmospheric circulation is studied through the four main modes of climate variability in the North Atlantic, the Atlantic Ridge, Scandinavian Blocking and the positive and negative phase of the North Atlantic Oscillation. We report a difference in the atmospheric circulation response after high latitude eruptions compared to the response after equatorial eruptions, where the positive phase of the North Atlantic Oscillation and the Atlantic Ridge seem to be more associated with equatorial eruptions while the negative phase of the North Atlantic Oscillation seems to follow high latitude eruptions. This response is present during the first five years and then again in years 8-12 after both equatorial and high latitude eruptions. Such a prolonged response is evidence of an ocean-atmosphere coupling that is initiated through different mechanisms, where we suspect sea ice to play a key role.


Sign in / Sign up

Export Citation Format

Share Document