barents and kara seas
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 36)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
A. Morozov ◽  
G. Avetisov ◽  
G. Antonovskaya ◽  
V. Asming ◽  
S. Baranov ◽  
...  

The article provides an overview and analysis of seismicity within the boundaries of the Arctic region for 2015, a description of seismic station networks, and processing methods. The catalog of earthquakes in the Arctic region was compiled on the basis of catalogs of several organizations and seismological centers. In total, 334 earthquakes are included in the earthquake catalog. Most of the earthquakes that occurred in 2015, including all the strongest earthquakes, were located within the mid-ocean ridges of Mon, Knipovich and Gakkel. In the offshore territories, most of the earthquakes were confined to the Svalbard archipelago, in particular, to the seismically active zone in the Sturfjord strait. The renewal of instrumental seismological observations in 2011 (station ZFI) on Alexandra Land Island in the Franz Josef Land archipelago made it possible to record weak earthquakes in the north of the shelf of the Barents and Kara Seas. For twelve earthquakes, the focal mechanism parameters are presented according to the Global CMT catalog.


2021 ◽  
pp. 1-39
Author(s):  
Cassandra D.W. Rogers ◽  
Kai Kornhuber ◽  
Sarah E. Perkins-Kirkpatrick ◽  
Paul C. Loikith ◽  
Deepti Singh

AbstractSimultaneous heatwaves affecting multiple regions (referred to as concurrent heatwaves), pose compounding threats to various natural and societal systems, including global food chains, emergency response systems, and reinsurance industries. While anthropogenic climate change is increasing heatwave risks across most regions, the interactions between warming and circulation changes that yield concurrent heatwaves remain understudied. Here, we quantify historical (1979-2019) trends in concurrent heatwaves during the warm-season (May-September, MJJAS) across the Northern Hemisphere mid- to high-latitudes. We find a significant increase of ~46% in the mean spatial extent of concurrent heatwaves, ~17% increase in their maximum intensity, and ~6-fold increase in their frequency. Using Self-Organising Maps, we identify large-scale circulation patterns (300 hPa) associated with specific concurrent heatwave configurations across Northern Hemisphere regions. We show that observed changes in the frequency of specific circulation patterns preferentially increase the risk of concurrent heatwaves across particular regions. Patterns linking concurrent heatwaves across eastern North America, eastern and northern Europe, parts of Asia, and the Barents and Kara Seas, show the largest increases in frequency (~5.9 additional days per decade). We also quantify the relative contributions of circulation pattern changes and warming to overall observed concurrent heatwave day frequency trends. While warming has a predominant and positive influence on increasing concurrent heatwaves, circulation pattern changes have a varying influence and account for up to 0.8 additional concurrent heatwave days per decade. Identifying regions with an elevated risk of concurrent heatwaves and understanding their drivers is indispensable for evaluating projected climate risks on interconnected societal systems and fostering regional preparedness in a changing climate.


2021 ◽  
Vol 67 (3) ◽  
pp. 280-292
Author(s):  
G. V. Surkova ◽  
V. A. Romanenko

The paper investigates the current regime of turbulent heat exchange with the atmosphere over the Barents and Kara Seas, as well as its spatial, seasonal and temporal variability (1979–2018). It is shown that over the past decades, the areas of the location of the centers of maximum energy exchange between the sea surface and the atmosphere have not changed significantly in comparison with the middle and second half of the XX century. It was revealed that the greatest seasonal and synoptic variability of heat fluxes is typical of the central and western parts of the Barents Sea. It was found that both indicators of variability in the cold season are 2–5 and more times higher than in the warm season, and the spatial heterogeneity of the indicators of variability in winter is about twice as large as in summer. Quantitative estimates have shown that, within the Barents Sea, the spatial variability of fluxes in winter may be 5–10 times or more higher than the summer values. Above the Kara Sea, the greatest heterogeneity in the fluxes field is typical of the autumn and early winter seasons. It has been found that the annual sums of heat fluxes from the surface of the Barents Sea exceed the values for the Kara Sea, on average, 3–4 and 5–6 times, for sensible and latent heat fluxes, respectively, and in some years may differ tens of times. For the period under study, a single trend of the integral fluxes over the water area and their annual magnitude is not expressed, although there are multi-year decadal fluctuations. It is shown that, despite the significant difference in the thermal regime of the Barents and Kara seas and the lower atmosphere above them, the interannual changes in the total turbulent flows are quite well synchronized, which indicates the commonality of large-scale hydrometeorological processes in these seas, which affect the energy exchange between the seas and the atmosphere.


2021 ◽  
pp. 64-78
Author(s):  
Lyudmila A. CHIZHOVA ◽  
◽  
Marsel G. GUBAIDULLIN ◽  

The development of Arctic hydrocarbon resources is in the sphere of interests of many large companies. At the same time, the vast northern territories and polar seas do not have a developed infrastructure that would allow implementing various transport and technological solutions for the development of oil fields. The opportunities for attracting the resources of the Russian Arctic into economic circulation are currently being used to a small extent, which is caused by various factors, both objective and subjective, that were formed at the previous stages of the country's development. This work is devoted to the problem of choosing an HR strategy when placing objects of the transport and technological system of oil fields in the Russian Arctic, taking into account the ecological, economic and socio-economic features of this macroregion. Using the example of oil and gas fields in the coastal-shelf zone of the south-eastern part of the Barents and Kara Seas, the authors consider multivariate forecasts for the formation of a rational scheme for the transportation of hydrocarbons as an integral part of the regional oil and gas complex. The authors assign a special role to the important economic and socio-psychological components associated with the processes of organizing the work of oil workers. At the same time, they come to the conclusion that the shift method of labor organization, adopted by many large mining companies, should not displace, but only complement the traditional methods of attracting personnel to the Arctic oil infrastructure facilities. The use of the combined method of labor organization in the Arctic is the most optimal, allowing to integrate the advantages and localize the disadvantages of other methods of labor organization.


2021 ◽  
Vol 500 (1) ◽  
pp. 761-765
Author(s):  
G. G. Matishov ◽  
G. V. Ilyin ◽  
I. S. Usyagina

2021 ◽  
Author(s):  
Juha Karvonen ◽  
Eero Rinne ◽  
Heidi Sallila ◽  
Petteri Uotila ◽  
Marko Mäkynen

Abstract. We present a method to combine CryoSat-2 (CS-2) radar altimeter and Sentinel-1 synthetic aperture radar (SAR) data to obtain sea ice thickness (SIT) estimates for the Barents and Kara Seas. Our approach yields larger spatial coverage and better accuracy compared to estimates based on either CS-2 or SAR alone. The SIT estimation method developed here is based on interpolation and extrapolation of CS-2 sea ice thickness (SIT) utilizing SAR segmentation and segmentwise SAR texture features. The SIT results are compared to SIT data derived from the AARI ice charts, to ORAS5. PIOMAS and TOPAZ4 ocean-sea ice data assimilation system reanalyses, and to daily MODIS based ice thickness charts. Our results are directly applicable to the future CRISTAL mission and Copenicus programme SAR missions.


2021 ◽  
pp. 1-42
Author(s):  
Robert Ricker ◽  
Frank Kauker ◽  
Axel Schweiger ◽  
Stefan Hendricks ◽  
Jinlun Zhang ◽  
...  

AbstractWe investigate how sea ice decline in summer and warmer ocean and surface temperatures in winter affect sea ice growth in the Arctic. Sea ice volume changes are estimated from satellite observations during winter from 2002 to 2019 and partitioned into thermodynamic growth and dynamic volume change. Both components are compared to validated sea ice-ocean models forced by reanalysis data to extend observations back to 1980 and to understand the mechanisms that cause the observed trends and variability. We find that a negative feedback driven by the increasing sea ice retreat in summer yields increasing thermodynamic ice growth during winter in the Arctic marginal seas eastward from the Laptev Sea to the Beaufort Sea. However, in the Barents and Kara Seas, this feedback seems to be overpowered by the impact of increasing oceanic heat flux and air temperatures, resulting in negative trends in thermodynamic ice growth of -2 km3month-1yr-1 on average over 2002-2019 derived from satellite observations.


2021 ◽  
Author(s):  
Stanislav D. Martyanov ◽  
Anton Y. Dvornikov ◽  
Vladimir A. Ryabchenko ◽  
Dmitry V. Sein

<p>A regional coupled eco-hydrodynamic model of the Barents and Kara Seas based on the MITgcm has been developed. The biogeochemical module is based on a 7-component model of pelagic biogeochemistry including the ocean carbon cycle. This regional model allows revealing and explaining the main mechanisms of the interaction between marine dynamic and biogeochemical processes in the Barents and Kara Seas under a changing climate. We present the main results of simulations for the past (1975-2005) and future (2035-2065) climate.</p><p>A clear relationship between the marginal ice zone area and primary production has been obtained, proving the importance of this zone in the functioning of the marine ecosystem. The interannual variability of the integrated primary production and the total sea ice area demonstrates an antiphase behavior, which means that the reduced sea ice cover area in the previous winter is one of the main reasons for the increase in primary production in the current year.</p><p>The model simulations demonstrate that, of all the external factors, sea ice area plays a primary role in the formation of primary production: in the overwhelming majority of cases, the contribution of the ice area prevails, and the pattern "more ice - less primary production" and vice versa is fulfilled in the Barents and Kara Seas. The effect of a decrease of incoming short-wave radiation becomes significant only when a significant decrease of the ice area occurs.</p><p>Compared to the period 1975-2005, the simulated total primary production in the Barents and Kara Seas is much higher for the period 2035-2065, while the sea ice area significantly decreases.</p><p>A regression dependence has been obtained for the total annual primary production as a function of sea ice area and incoming short-wave radiation. Its validity is verified for both past (dependent) and future (independent) climatic periods. It justifies the use of such simple statistical model for quick estimates of the primary production in the Barents and Kara Seas.</p><p>Acknowledgements: The research was performed in the framework of the state assignment of the Ministry of Science and Higher Education of Russia (theme No. 0128-2021-0014). This work used resources of the Deutsches Klimarechenzentrum (DKRZ) granted by its Scientific Steering Committee (WLA) under project ID ba1206.</p>


2021 ◽  
pp. 1-54
Author(s):  
Joseph P. Clark ◽  
Vivek Shenoy ◽  
Steven B. Feldstein ◽  
Sukyoung Lee ◽  
Michael Goss

AbstractThe wintertime (December – February) 1990 - 2016 Arctic surface air temperature (SAT) trend is examined using self-organizing maps (SOMs). The high dimensional SAT dataset is reduced into nine representative SOM patterns, with each pattern exhibiting a decorrelation time scale about 10 days and having about 85% of its variance coming from intraseasonal timescales. The trend in the frequency of occurrence of each SOM pattern is used to estimate the interdecadal Arctic winter warming trend associated with the SOM patterns. It is found that trends in the SOM patterns explain about one-half of the SAT trend in the Barents and Kara Seas, one-third of the SAT trend around Baffin Bay and two-thirds of the SAT trend in the Chukchi Sea. A composite calculation of each term in the thermodynamic energy equation for each SOM pattern shows that the SAT anomalies grow primarily through the advection of the climatological temperature by the anomalous wind. This implies that a substantial fraction of Arctic amplification is due to horizontal temperature advection that is driven by changes in the atmospheric circulation. An analysis of the surface energy budget indicates that the skin temperature anomalies as well as the trend, although very similar to that of the SAT, are produced primarily by downward longwave radiation.


Sign in / Sign up

Export Citation Format

Share Document