Spatial differences in the impact of the North Atlantic Oscillation on the flow of rivers in Europe

2011 ◽  
Vol 42 (1) ◽  
pp. 30-39 ◽  
Author(s):  
Dariusz Wrzesiński ◽  
Rafał Paluszkiewicz

The article presents regional differences in the impact that the North Atlantic Oscillation (NAO) exerts on the flow of European rivers. The impact is determined by temporal variations in the strength of relations expressed by coefficients of correlation between monthly or seasonal NAO indices and discharges recorded at 510 river profiles. The results of the correlation analysis were arranged using Ward’s method of hierarchical grouping. The classification of river profiles thus obtained made it possible to distinguish seven regions differing in the nature of the dependence between streamflow and the intensity of the NAO. The most statistically significant positive correlations are displayed by the rivers of Fennoscandia, Denmark and the northwest part of the British Isles in the winter period, while the most significant negative correlations (also in winter) are recorded for streams of the Mediterranean Basin, western France and the southeast of England. In the southeast part of the Baltic Sea drainage basin, significant positive correlations of streamflow with the NAO indices can be observed in the winter season and negative correlations are observed in spring.

2019 ◽  
Vol 32 (19) ◽  
pp. 6491-6511 ◽  
Author(s):  
Hugh S. Baker ◽  
Tim Woollings ◽  
Chris E. Forest ◽  
Myles R. Allen

Abstract The North Atlantic Oscillation (NAO) and eddy-driven jet contain a forced component arising from sea surface temperature (SST) variations. Due to large amounts of internal variability, it is not trivial to determine where and to what extent SSTs force the NAO and jet. A linear statistical–dynamic method is employed with a large climate ensemble to compute the sensitivities of the winter and summer NAO and jet speed and latitude to the SSTs. Key regions of sensitivity are identified in the Indian and Pacific basins, and the North Atlantic tripole. Using the sensitivity maps and a long observational SST dataset, skillful reconstructions of the NAO and jet time series are made. The ability to skillfully forecast both the winter and summer NAO using only SST anomalies is also demonstrated. The linear approach used here allows precise attribution of model forecast signals to SSTs in particular regions. Skill comes from the Atlantic and Pacific basins on short lead times, while the Indian Ocean SSTs may contribute to the longer-term NAO trend. However, despite the region of high sensitivity in the Indian Ocean, SSTs here do not provide significant skill on interannual time scales, which highlights the limitations of the imposed SST approach. Given the impact of the NAO and jet on Northern Hemisphere weather and climate, these results provide useful information that could be used for improved attribution and forecasting.


2003 ◽  
Vol 3 (6) ◽  
pp. 2053-2066 ◽  
Author(s):  
J. K. Creilson ◽  
J. Fishman ◽  
A. E. Wozniak

Abstract. Using the empirically-corrected tropospheric ozone residual (TOR) technique, which utilizes coincident observations of total ozone from the Total Ozone Mapping Spectrometer (TOMS) and stratospheric ozone profiles from the Solar Backscattered Ultraviolet (SBUV) instruments, the seasonal and regional distribution of tropospheric ozone across the North Atlantic from 1979-2000 is examined. Its relationship to the North Atlantic Oscillation (NAO) is also analyzed as a possible transport mechanism across the North Atlantic. Monthly climatologies of tropospheric ozone for five different regions across the North Atlantic exhibit strong seasonality. The correlation between these monthly climatologies of the TOR and ozonesonde profiles at nearby sites in both eastern North America and western Europe are highly significant (R values of +0.98 and +0.96 respectively) and help to validate the use of satellite retrievals of tropospheric ozone. Distinct springtime interannual variability over North Atlantic Region 5 (eastern North Atlantic-western Europe) is particularly evident and exhibits similar variability to the positive phase of the NAO (R=+0.61, r=<0.01). Positive phases of the NAO are indicative of a stronger Bermuda-Azores high and a stronger Icelandic low and thus faster more zonal flow across the North Atlantic from west to east. This flow regime appears to be causing the transport of tropospheric ozone across the North Atlantic and onto Europe. The consequence of such transport is the impact on a downwind region's ability to meet their ozone attainment goals. This link between the positive phase of the NAO and increased tropospheric ozone over Region 5 could be an important tool for prediction of such pollution outbreaks.


2011 ◽  
Vol 15 (2) ◽  
pp. 1-13 ◽  
Author(s):  
Shouraseni Sen Roy

Abstract The present study focuses on the impact of the North Atlantic Oscillation (NAO) in shaping the regional-level precipitation during the peak months of the two main rainy seasons over the Indian subcontinent. Monthly precipitation data from 1871 to 2005 were collected for 30 homogenous regions across the subcontinent. Regression analysis was used to analyze the strength of the relationship between NAO on regional-level precipitation patterns. The results of the study showed distinct spatial variations in the response of regional-level rainfall to the monthly NAO index. There were greater variations in the strength of the regression coefficients for peak monsoon rainfall (PMR) compared to the peak winter rainfall (PWR) season. During the latter half of the year, the association between PMR and the NAO index was predominantly negative. In general, the role of NAO was more pronounced across most of the regions in the peninsular India.


2013 ◽  
Vol 52 (10) ◽  
pp. 2204-2225 ◽  
Author(s):  
S. Jerez ◽  
R. M. Trigo ◽  
S. M. Vicente-Serrano ◽  
D. Pozo-Vázquez ◽  
R. Lorente-Plazas ◽  
...  

AbstractEurope is investing considerably in renewable energies for a sustainable future, with both Iberian countries (Portugal and Spain) promoting significantly new hydropower, wind, and solar plants. The climate variability in this area is highly controlled by just a few large-scale teleconnection modes. However, the relationship between these modes and the renewable climate-dependent energy resources has not yet been established in detail. The objective of this study is to evaluate the impact of the North Atlantic Oscillation (NAO) on the interannual variability of the main and primary renewable energy resources in Iberia. This is achieved through a holistic assessment that is based on a 10-km-resolution climate simulation spanning the period 1959–2007 that provides physically consistent data of the various magnitudes involved. A monthly analysis for the extended winter (October–March) months shows that negative NAO phases enhance wind speeds (10%–15%) and, thereby, wind power (estimated around 30% at typical wind-turbine altitudes) and hydropower resources (with changes in precipitation exceeding 100% and implying prolonged responses in reservoir storage and release throughout the year), while diminishing the solar potential (10%–20%). Opposite signals were also sporadically identified, being well explained when taking into account the orography and the prevailing wind direction during both NAO phases. An additional analysis using real wind, hydropower, and solar power generation data further confirms the strong signature of the NAO.


2009 ◽  
Vol 22 (2) ◽  
pp. 364-380 ◽  
Author(s):  
Hai Lin ◽  
Gilbert Brunet ◽  
Jacques Derome

Abstract Based on the bivariate Madden–Julian oscillation (MJO) index defined by Wheeler and Hendon and 25 yr (1979–2004) of pentad data, the association between the North Atlantic Oscillation (NAO) and the MJO on the intraseasonal time scale during the Northern Hemisphere winter season is analyzed. Time-lagged composites and probability analysis of the NAO index for different phases of the MJO reveal a statistically significant two-way connection between the NAO and the tropical convection of the MJO. A significant increase of the NAO amplitude happens about 5–15 days after the MJO-related convection anomaly reaches the tropical Indian Ocean and western Pacific region. The development of the NAO is associated with a Rossby wave train in the upstream Pacific and North American region. In the Atlantic and African sector, there is an extratropical influence on the tropical intraseasonal variability. Certain phases of the MJO are preceded by the occurrence of strong NAOs. A significant change of upper zonal wind in the tropical Atlantic is caused by a modulated transient westerly momentum flux convergence associated with the NAO.


2021 ◽  
Vol 8 (1) ◽  
pp. 45
Author(s):  
Graciela González ◽  
Amílcar Calzada ◽  
Alejandro Rodríguez

There have been several advances in understanding the North Atlantic Oscillation (NAO), but there are still uncertainties regarding its level of influence on the tropical climate. That is why this work determines the influence of the NAO on the main hydrometeorological events that affected Cuba in the 1999–2016 period. To comply with this, a regression analysis is carried out in the CurveExpert software where the combined influence of the NAO and El Niño-Southern Oscillation on hydrometeorological events is also examined. It was found that the NAO exerts a greater influence on Cuba when it is in its negative phase during the winter season.


2011 ◽  
Vol 25 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Naomi Marcil Levine ◽  
Scott C. Doney ◽  
Ivan Lima ◽  
Rik Wanninkhof ◽  
Nicholas R. Bates ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document