Detection and quantification of microplastic in soils using a 3D Laser Scanning Confocal Microscope

Author(s):  
Tabea Zeyer ◽  
Peter Fiener

<p>There is growing concern regarding the pollution of our environment with plastic materials, whereas especially the dimension of microplastic pollution and its ecological effect is widely discussed. Most studies focus on aquatic environments, while studies in terrestrial systems (mainly soils) are rare. This partly results from the challenges arising when microplastic particles need to be separated from organic and mineral particles. Key analytic techniques for microplastic detection in aquatic and terrestrial systems include Fourier transformation-infrared (FT-IR) and micro-Raman spectroscopy, as well as thermal extraction desorption-gas chromatography-mass spectrometry (TED-GC-MS) and pyrolysis-gas chromatography-mass spectrometry (pyr-GC-MS). While the mass spectrometric methods lack to determine particle sizes, the FT-IR and micro-Raman spectroscopy are very costly and time consuming. Moreover, the latter detection methods are very sensitive to organic matter particles, which are difficult to remove fully during soil sample preparation. Hence, a faster and more robust method to determine microplastic in soils is essential for a wider analysis of this environmental problem. In this study, we combine a density separation scheme with a 3D Laser Scanning Confocal Microscope (Keyence VK-X1000, Japan) analysis to determine the number and size of microplastic particles in soil samples. For the analysis a silty loam (16% sand, 59% silt, 25% clay, 1.3% organic carbon) and a loamy sand (72% sand, 18% silt, 10% clay, 0.9% organic carbon) were spiked with different concentrations of high density Polyethylene (HDPE), low density Polyethylene (LDPE) and Polystyrene (PS) microplastic (HDPE 50 - 100 and 250 - 300 µm, LDPE <50 and 200 - 800 µm, PS <100 µm). 3D Laser Scanning Confocal Microscopy show very promising results while using differences in optical characteristic and especially surface roughness, to distinguish between plastic and mineral as well as organic particles left after density separation. Overall, the 3D Laser Scanning Confocal Microscopy is a promising tool for relatively fast detection and quantification of microplastic in soils, which could perfectly complement the also relative fast mass-spectrometric methods to determine plastic types. However, to result in an operational and automated analyzation process further research based on the 3D Laser Scanning Confocal Microscopy analysis is needed.</p>

2016 ◽  
Vol 13 (4) ◽  
pp. 577-587 ◽  
Author(s):  
Eva Cznotka ◽  
Steffen Jeschke ◽  
Sebastian Schmohl ◽  
Patrik Johansson ◽  
Hans-Dieter Wiemhöfer

1998 ◽  
Vol 6 (5) ◽  
pp. 20-23 ◽  
Author(s):  
William McMillan

Confocal microscopy has gained great popularity in biology and medical research because of the ability to image three-dimensional objects at greater resolution than conventional optical microscopes. In a typical Laser Scanning Confocal Microscope (LSCM), the specimen stage is stepped up or down to collect a series of two-dimensional images (or slices) at each focal plane. Conventional light microscopes create images with a depth of field, at high power, of 2 to 3 μm. The depth of field of confocal microscopes ranges from 0.5 to 1.5 μm, which allows information to be collected from a well defined optical section rather than from most of the specimen. Therefore, due to this “thin” focal plane, out of focus light is virtually eliminated which results in an increase in contrast, clarity and detection.


Author(s):  
J. Holy ◽  
G. Schatten

One of the classic limitations of light microscopy has been the fact that three dimensional biological events could only be visualized in two dimensions. Recently, this shortcoming has been overcome by combining the technologies of laser scanning confocal microscopy (LSCM) and computer processing of microscopical data by volume rendering methods. We have employed these techniques to examine morphogenetic events characterizing early development of sea urchin embryos. Specifically, the fourth cleavage division was examined because it is at this point that the first morphological signs of cell differentiation appear, manifested in the production of macromeres and micromeres by unequally dividing vegetal blastomeres.The mitotic spindle within vegetal blastomeres undergoing unequal cleavage are highly polarized and develop specialized, flattened asters toward the micromere pole. In order to reconstruct the three-dimensional features of these spindles, both isolated spindles and intact, extracted embryos were fluorescently labeled with antibodies directed against either centrosomes or tubulin.


2001 ◽  
Vol 34 (15) ◽  
pp. 5186-5191 ◽  
Author(s):  
Hiroshi Jinnai ◽  
Hiroshi Yoshida ◽  
Kohtaro Kimishima ◽  
Yoshinori Funaki ◽  
Yoshitsugu Hirokawa ◽  
...  

1994 ◽  
Vol 42 (11) ◽  
pp. 1413-1416 ◽  
Author(s):  
S L Erlandsen ◽  
E M Rasch

We investigated direct measurement of the DNA content of the parasitic intestinal flagellate Giardia lamblia through quantitation by Feulgen microspectrophotometry and also by visualization of Feulgen-stained DNA chromosomes within dividing cells by laser scanning confocal microscopy. Individual trophozoites of Giardia (binucleate) contained 0.144 +/- 0.018 pg of DNA/cell or 0.072 pg DNA/nucleus. Giardia lamblia cysts (quadranucleate) contained 0.313 +/- 0.003 pg DNA or 0.078 pg DNA/nucleus. The genome size (C) value per nucleus ranged between 6.5-7.1 x 10(7) BP for trophozoites and cysts, respectively. Confocal microscopic examination of Giardia trophozoites undergoing binary fission revealed five chromosome-like bodies within each nucleus. Further information about genome size and DNA content within different Giardia species may help to clarify the pivotal role of these primitive eukaryotic cells in evolutionary development.


2014 ◽  
Vol 926-930 ◽  
pp. 1124-1127
Author(s):  
Zhen Xun Jin ◽  
Li Li Zhang ◽  
Yan Wang ◽  
Lin Chuan Zeng ◽  
Yang Yu ◽  
...  

The aim of this study is to investigate the effects and mechanism of chloroquine (CQ) on the apoptosis induced by cisplatin in human gastric cancer BGC823 cells. MTT assay was used to detect the state of cell growth. The appearances of cellular apoptosis were detected by laser scanning confocal microscopy and light microscopy. The expressions of LC3 and p62 were detected by laser scanning confocal microscopy. MTT tests showed that the non-toxic dose of CQ could increase the inhibition rate of BGC823 cells induced by cisplatin. Under the light microscope, the ratio of apoptotic cells in the group treated with non-toxic dose of CQ combined with cisplatin was higher than that in the group treated with cisplatin alone. Hoechst33342 staining showed that the ratio of apoptotic cells in the combination group was higher than that in the cisplatin group. The expression and colocalization of LC3 and p62 proteins were significantly increased in the combination group. These results indicate that CQ can enhance the cell apoptosis induced by cisplatin in BGC823 cells, which is through the inhibition of autophagy.


Sign in / Sign up

Export Citation Format

Share Document