A new comparative scale between tropopause height and beryllium 7 and the weight of quasi-biennial oscillation (QBO) effect.

Author(s):  
Lucrezia Terzi ◽  
Gerhard Wotawa ◽  
Paul W. Staten ◽  
Lan Luan ◽  
Axel Gabriel ◽  
...  

<p>Recent studies demonstrated how accurate beryllium 7 can be used as proxy to predict seasonal weather, in particular Indian monsoons, climate change patterns such as tropopause height changes, tropopause breathing and Jet Stream stalling.</p><p>Beryllium 7 studies also prove that climate change phenomena are not driven by solar flux or earth magnetic field but are only partially influenced by them.</p><p>In this work we will compare recent tropopause height data with Beryllium 7 in order to build a comparative scale between the 2 parameters, including a focus on QBO (quasi-biennual oscillation) to quantify the effect of QBO on the analysed beryllium 7 data.</p>

2019 ◽  
Vol 31 ◽  
pp. 21-26
Author(s):  
Igor Shibaev

With the introduction from June 2015 of a new methodology for estimation of Wolf numbers W (or WSN — Wolf sunspot number), this series was corrected from January 1749 to May 2015, i.e. a new version of the series WSN was proposed. The greatest transformation affected the cycles of a statistically reliable part of the series (since, 1849), which was clearly reflected in their amplitude correction and, accordingly, in the long-period component of the series, determining the epoch of maximum/minimum solar activity. The quasi-biennial oscillations available in the solar magnetic field and in the total flux of its radiation also manifest themselves in a number of parameters of the Earth ionosphere and evaluation of their transformation degree is of high significance. This paper compares the characteristics of the frequency interval of the quasi-biennial oscillations of both versions of a series.


2006 ◽  
Vol 24 (5) ◽  
pp. 1355-1366 ◽  
Author(s):  
M. Venkat Ratnam ◽  
T. Tsuda ◽  
T. Kozu ◽  
S. Mori

Abstract. The vertical and temporal variations of Kelvin waves and the associated effects on the tropical tropopause were studied using long-term (from May 2001 to October 2005) CHAMP/GPS (CHAllenging Mini satellite Payload/Global Positioning System) radio occultation (RO) measurements. The periods of these waves were found to be varying in between 10 and 15 days, with vertical wavelengths 5–8 km. These variations clearly show eastward phase propagation in the time-longitude section and eastward phase tilts with height in altitude-longitude, displaying the characteristics of Kelvin waves. The peak variance in the temperature is found over the Indian Ocean and into the western Pacific within the broad region of the equator. Kelvin wave amplitudes were found significantly enhanced in the eastward shear of the quasi-biennial oscillation (QBO) and are confined in and around the tropopause during westward phase of QBO, where it extends between 17 and 25 km during the eastward phase of QBO and is damped away above, consistent with earlier reported results. The amplitudes are increasing during the months of Northern Hemisphere winter and sometimes they are highly sporadic in nature. Seasonal and inter-annual variations in the Kelvin wave amplitudes near the tropical tropopause coincide exactly with the tropopause height and temperature, with a sharp tropopause during maximum Kelvin wave activity. A clear annual oscillation, along with a month-to-month coincidence is evident most of the time in both the tropopause height and Kelvin wave activity, with maximum and minimum Kelvin wave amplitudes during the Northern Hemisphere winter and summer, respectively. In addition, a signature of quasi-biennial oscillation (QBO) in the tropopause structure is also seen in long-term tropopause variations, although the amplitudes are less when compared to the annual oscillation. In the westward phase of QBO (during strong Kelvin wave activity) at 20km (in 2001–2002 winter and 2003–2004 winter), the tropopause height was slightly larger with a sharp tropopause and low temperature. The process behind these observed features has been discussed.


2013 ◽  
Vol 13 (6) ◽  
pp. 16661-16697 ◽  
Author(s):  
C. E. Sioris ◽  
C. A. McLinden ◽  
V. E. Fioletov ◽  
C. Adams ◽  
J. M. Zawodny ◽  
...  

Abstract. We are able to replicate previously reported decadal trends in the tropical lower stratospheric ozone anomaly based on Stratospheric Aerosol and Gas Experiment II observations. We have extended the satellite-based ozone anomaly time series to the present (December 2012) by merging SAGE II with OSIRIS (Optical Spectrograph and Infrared Imager System) and correcting for the small bias (~0.5%) between them, determined using their temporal overlap of 4 yr. Analysis of the merged dataset (1984–2012) shows a statistically significant negative trend at all altitudes in the 18–25 km range reaching (−6.5 ± 1.8)% decade−1 at 18.5 km, with underlying strong variations due to El Niño–Southern Oscillation, the Quasi–Biennial Oscillation, and tropopause height.


Sign in / Sign up

Export Citation Format

Share Document