Centennial variability driven by salinity exchanges between the Atlantic and Arctic in a coupled climate model

Author(s):  
Weimin Jiang ◽  
Guillaume Gastineau ◽  
Francis Codron

<p>The centennial to multi-centennial variability of the Atlantic Meridional Overturning Circulation (AMOC) is studied in a 1200-yr pre-industrial control simulation of the IPSL-CM6-LR atmosphere-ocean coupled model. In this run, a spectrum analysis finds a periodicity of the low-frequency variability of AMOC, with a period of about 200-year. This variability alters the Northern Hemisphere climate over the land and modulates the Arctic sea ice extent and volume. The associated density variations show large positive (negative) salinity-driven density anomalies in the Nordic Seas and subpolar gyre associated with a strong (week) AMOC state. The positive salinity anomalies in the Greenland Sea are found to be generated by anomalous southward salinity transport in the Fram Straits. The gradual AMOC increase and the associated oceanic northward heat transport melt the sea ice in the Arctic and build shallow negative salinity anomalies in the central Arctic. In parallel, the AMOC is also associated with a northward salt transport into the Eastern Arctic, by an inflow of Atlantic water from the Barents Sea to the East Siberian Ocean. The accumulated surface freshwater in the central Arctic is ultimately exported into the Atlantic mainly through the Fram Strait via intensified East Greenland Current, lowering the upper ocean density and enhancing the stratification at the regions where the cold deep limb of AMOC is formed. The positive salinity anomalies at subsurface then slowly reach the surface though diffusion, increasing the surface salinity. The oscillation then turns into the opposite phase.</p>

2021 ◽  
Author(s):  
Weimin Jiang ◽  
Guillaume Gastineau ◽  
Francis Codron

<p>A pronounced multi-centennial variability of the Atlantic meridional overturning circulation (AMOC) is found to be regulated by the salinity exchanges between the Atlantic and Arctic ocean in the IPSL-CM6A-LR atmosphere-ocean coupled model. The AMOC variations are preceded by salinity-driven density anomalies in the main deep convection sites in the Labrador and Greenland seas. Associated with a strong AMOC, the Arctic sea ice export through the Fram Strait reduces due to the decreased sea ice volume and anomalous northward currents. Anomalous freshwater hence accumulates at the surface in the Central Arctic. Meanwhile, the enhanced Atlantic inflow enters the Arctic through the Barents Sea and leads to a positive salinity in the Eastern Arctic subsurface. The surface freshwater anomalies last for 4 to 5 decades before they eventually reach the Lincoln Sea north of Greenland. The associated oceanic currents around Greenland reorganize, favoring the anomalous Arctic freshwater export to the North Atlantic and intensifying the stratification in deep convection sites. The AMOC then weakens, and the Central Arctic presents a positive surface salinity anomaly in turn. The oscillation switches to the opposite phase. These AMOC and sea ice fluctuations modulate climate worldwide, with a strong AMOC leading to a warming of 0.4°C in the northern extratropics, reaching up to 1°C in the Arctic lower troposphere during winter. In all seasons, a northward displacement of the intertropical convergence zone is also simulated.</p>


2019 ◽  
Vol 32 (5) ◽  
pp. 1361-1380 ◽  
Author(s):  
J. Ono ◽  
H. Tatebe ◽  
Y. Komuro

Abstract The mechanisms for and predictability of a drastic reduction in the Arctic sea ice extent (SIE) are investigated using the Model for Interdisciplinary Research on Climate (MIROC) version 5.2. Here, a control (CTRL) with forcing fixed at year 2000 levels and perfect-model ensemble prediction (PRED) experiments are conducted. In CTRL, three (model years 51, 56, and 57) drastic SIE reductions occur during a 200-yr-long integration. In year 56, the sea ice moves offshore in association with a positive phase of the summer Arctic dipole anomaly (ADA) index and melts due to heat input through the increased open water area, and the SIE drastically decreases. This provides the preconditioning for the lowest SIE in year 57 when the Arctic Ocean interior is in a warm state and the spring sea ice volume has a large negative anomaly due to drastic ice reduction in the previous year. Although the ADA is one of the key mechanisms behind sea ice reduction, it does not always cause a drastic reduction. Our analysis suggests that wind direction favoring offshore ice motion is a more important factor for drastic ice reduction events. In years experiencing drastic ice reduction events, the September SIE can be skillfully predicted in PRED started from July, but not from April. This is because the forecast errors for the July sea level pressure and those for the sea ice concentration and sea ice thickness along the ice edge are large in PRED started from April.


2012 ◽  
Vol 6 (6) ◽  
pp. 1383-1394 ◽  
Author(s):  
F. Massonnet ◽  
T. Fichefet ◽  
H. Goosse ◽  
C. M. Bitz ◽  
G. Philippon-Berthier ◽  
...  

Abstract. We examine the recent (1979–2010) and future (2011–2100) characteristics of the summer Arctic sea ice cover as simulated by 29 Earth system and general circulation models from the Coupled Model Intercomparison Project, phase 5 (CMIP5). As was the case with CMIP3, a large intermodel spread persists in the simulated summer sea ice losses over the 21st century for a given forcing scenario. The 1979–2010 sea ice extent, thickness distribution and volume characteristics of each CMIP5 model are discussed as potential constraints on the September sea ice extent (SSIE) projections. Our results suggest first that the future changes in SSIE with respect to the 1979–2010 model SSIE are related in a complicated manner to the initial 1979–2010 sea ice model characteristics, due to the large diversity of the CMIP5 population: at a given time, some models are in an ice-free state while others are still on the track of ice loss. However, in phase plane plots (that do not consider the time as an independent variable), we show that the transition towards ice-free conditions is actually occurring in a very similar manner for all models. We also find that the year at which SSIE drops below a certain threshold is likely to be constrained by the present-day sea ice properties. In a second step, using several adequate 1979–2010 sea ice metrics, we effectively reduce the uncertainty as to when the Arctic could become nearly ice-free in summertime, the interval [2041, 2060] being our best estimate for a high climate forcing scenario.


2012 ◽  
Vol 6 (4) ◽  
pp. 2931-2959 ◽  
Author(s):  
F. Massonnet ◽  
T. Fichefet ◽  
H. Goosse ◽  
C. M. Bitz ◽  
G. Philippon-Berthier ◽  
...  

Abstract. We examine the recent (1979–2010) and future (2011–2100) characteristics of the summer Arctic sea ice cover as simulated by 29 Earth system and general circulation models from the Coupled Model Intercomparison Project, phase 5 (CMIP5). As was the case with CMIP3, a large inter-model spread persists in the simulated summer sea ice losses over the 21st century for a given forcing scenario. The initial 1979–2010 sea ice properties (including the sea ice extent, thickness distribution and volume characteristics) of each CMIP5 model are discussed as potential constraints on the September sea ice extent (SSIE) projections. Our results suggest first that the SSIE anomalies (compared to the 1979–2010 model SSIE) are related in a complicated manner to the initial 1979–2010 sea ice model characteristics, due to the large diversity of the CMIP5 population (at a given time, some models are in an ice-free state while others are still on the track of ice loss). In a new diagram (that does not consider the time as an independent variable) we show that the transition towards ice-free conditions is actually occuring in a very similar manner for all models. For these reasons, some quantities that do not explicitly depend on time, such as the year at which SSIE drops below a certain threshold, are likely to be constrained. In a second step, using several adequate 1979–2010 sea ice metrics, we effectively reduce the uncertainty as to when the Arctic could become nearly ice-free in summertime (between 2041 and 2060 for a high climate forcing scenario).


2020 ◽  
Author(s):  
Guillaume Boutin ◽  
Timothy Williams ◽  
Pierre Rampal ◽  
Einar Olason ◽  
Camille Lique

<p>The decrease in Arctic sea ice extent is associated with an increase of the area where sea ice and open ocean interact, commonly referred to as the Marginal Ice Zone (MIZ). In this area, sea ice is particularly exposed to waves that can penetrate over tens to hundreds of kilometres into the ice cover. Waves are known to play a major role in the fragmentation of sea ice in the MIZ, and the interactions between wave-induced sea ice fragmentation and lateral melting have received particular attention in recent years. The impact of this fragmentation on sea ice dynamics, however, remains mostly unknown, although it is thought that fragmented sea ice experiences less resistance to deformation than pack ice. In this presentation, we will introduce a new coupled framework involving the spectral wave model WAVEWATCH III and the sea ice model neXtSIM, which includes a Maxwell-Elasto Brittle rheology. We use this coupled modelling system to investigate the potential impact of wave-induced sea ice fragmentation on sea ice dynamics. Focusing on the Barents Sea, we find that the decrease of the internal stress of sea ice resulting from its fragmentation by waves results in a more dynamical MIZ, in particular in areas where sea ice is compact. Sea ice drift is enhanced for both on-ice and off-ice wind conditions. Our results stress the importance of considering wave–sea-ice interactions for forecast applications. They also suggest that waves likely modulate the area of sea ice that is advected away from the pack by ocean (sub-)mesoscale eddies near the ice edge, potentially contributing to the observed past, current and future sea ice cover decline in the Arctic. </p>


2019 ◽  
Author(s):  
Alex West ◽  
Mat Collins ◽  
Ed Blockley

Abstract. Arctic sea ice has declined rapidly over recent decades. Models predict that the Arctic will be nearly ice-free by mid-century, but the spread in predictions of sea ice extent is currently large. The reasons for this spread are poorly understood, partly due to a lack of observations with which the processes by which Arctic atmospheric and oceanic forcing affect sea ice state can be examined. In this study, a method of estimating fluxes of top melt, top conduction, basal conduction and ocean heat flux from Arctic ice mass balance buoy elevation and temperature data is presented. The derived fluxes are used to evaluate modelled fluxes from the coupled climate model HadGEM2-ES in two densely sampled regions of the Arctic, the North Pole and Beaufort Sea. The evaluation shows the model to overestimate the magnitude of summer top melting fluxes, and winter conductive fluxes, results which are physically consistent with an independent sea ice and surface energy evaluation of the same model.


2020 ◽  
Author(s):  
Guillaume Boutin ◽  
Timothy Williams ◽  
Pierre Rampal ◽  
Einar Olason ◽  
Camille Lique

Abstract. The decrease in Arctic sea ice extent is associated with an increase of the area where sea ice and open ocean interact, commonly referred to as the Marginal Ice Zone (MIZ). In this area, sea ice is particularly exposed to waves that can penetrate over tens to hundreds of kilometres into the ice cover. Waves are known to play a major role in the fragmentation of sea ice in the MIZ, and the interactions between wave-induced sea ice fragmentation and lateral melting have received particular attention in recent years. The impact of this fragmentation on sea ice dynamics, however, remains mostly unknown, although it is thought that fragmented sea ice experiences less resistance to deformation than pack ice. Here, we introduce a new coupled framework involving the spectral wave model WAVEWATCH III and the sea ice model neXtSIM, which includes a Maxwell-Elasto Brittle rheology. We use this coupled modelling system to investigate the potential impact of wave-induced sea ice fragmentation on sea ice dynamics. Focusing on the Barents Sea, we find that the decrease of the internal stress of sea ice resulting from its fragmentation by waves results in a more dynamical MIZ, in particular in areas where sea ice is compact. Sea ice drift is enhanced for both on-ice and off-ice wind conditions. Our results stress the importance of considering wave–sea-ice interactions for forecast applications. They also suggest that waves likely modulate the area of sea ice that is advected away from the pack by ocean (sub-)mesoscale eddies near the ice edge, potentially contributing to the observed past, current and future sea ice cover decline in the Arctic.


2021 ◽  
Author(s):  
Stephanie Hay ◽  
Paul Kusnher

<p>Antarctic sea ice has gradually increased in extent over the forty-year-long satellite record, in contrast with the clear decrease in sea-ice extent seen in the Arctic over the same time period. However, state-of-the-art climate models ubiquitously project Antarctic sea-ice to decrease over the coming century, much as they do for Arctic sea-ice. Several recent years have also seen record low Antarctic sea-ice. It is therefore of interest to understand what the climate response to Antarctic sea-ice loss will be. </p><p>We have carried out new fully coupled climate model simulations to assess the response to sea-ice loss in either hemisphere separately or coincidentally under different albedo parameter settings to determine the relative importance of each. By perturbing the albedo of the snow overlying the sea ice and the albedo of the bare sea ice, we obtain a suite of simulations to assess the linearity and additivity of sea-ice loss. We find the response to sea-ice loss in each hemisphere exhibits a high degree of additivity, and can simply be decomposed into responses due to loss in each hemisphere separately. We find that the response to Antarctic sea-ice loss exceeds that of Arctic sea-ice loss in the tropics, and that Antarctic sea-ice loss leads to statistically significant Arctic warming, while the opposite is not true.</p><p>With these new simulations and one in which CO<sub>2</sub> is instantaneously doubled , we can further characterize the response to sea-ice loss from each hemisphere using an extension to classical pattern scaling that includes three controlling parameters. This allows us to simultaneously compute the sensitivity patterns to Arctic sea-ice loss, Antarctic sea-ice loss, and to tropical warming. The statistically significant response to Antarctic sea-ice loss in the Northern Hemisphere extratropics is found to be mediated by tropical warming and small amounts of Arctic sea-ice loss.</p>


2018 ◽  
Vol 31 (12) ◽  
pp. 4917-4932 ◽  
Author(s):  
Ingrid H. Onarheim ◽  
Tor Eldevik ◽  
Lars H. Smedsrud ◽  
Julienne C. Stroeve

The Arctic Ocean is currently on a fast track toward seasonally ice-free conditions. Although most attention has been on the accelerating summer sea ice decline, large changes are also occurring in winter. This study assesses past, present, and possible future change in regional Northern Hemisphere sea ice extent throughout the year by examining sea ice concentration based on observations back to 1950, including the satellite record since 1979. At present, summer sea ice variability and change dominate in the perennial ice-covered Beaufort, Chukchi, East Siberian, Laptev, and Kara Seas, with the East Siberian Sea explaining the largest fraction of September ice loss (22%). Winter variability and change occur in the seasonally ice-covered seas farther south: the Barents Sea, Sea of Okhotsk, Greenland Sea, and Baffin Bay, with the Barents Sea carrying the largest fraction of loss in March (27%). The distinct regions of summer and winter sea ice variability and loss have generally been consistent since 1950, but appear at present to be in transformation as a result of the rapid ice loss in all seasons. As regions become seasonally ice free, future ice loss will be dominated by winter. The Kara Sea appears as the first currently perennial ice-covered sea to become ice free in September. Remaining on currently observed trends, the Arctic shelf seas are estimated to become seasonally ice free in the 2020s, and the seasonally ice-covered seas farther south to become ice free year-round from the 2050s.


2013 ◽  
Vol 7 (2) ◽  
pp. 555-567 ◽  
Author(s):  
A. E. West ◽  
A. B. Keen ◽  
H. T. Hewitt

Abstract. The fully coupled climate model HadGEM1 produces one of the most accurate simulations of the historical record of Arctic sea ice seen in the IPCC AR4 multi-model ensemble. In this study, we examine projections of sea ice decline out to 2030, produced by two ensembles of HadGEM1 with natural and anthropogenic forcings included. These ensembles project a significant slowing of the rate of ice loss to occur after 2010, with some integrations even simulating a small increase in ice area. We use an energy budget of the Arctic to examine the causes of this slowdown. A negative feedback effect by which rapid reductions in ice thickness north of Greenland reduce ice export is found to play a major role. A slight reduction in ocean-to-ice heat flux in the relevant period, caused by changes in the meridional overturning circulation (MOC) and subpolar gyre in some integrations, as well as freshening of the mixed layer driven by causes other than ice melt, is also found to play a part. Finally, we assess the likelihood of a slowdown occurring in the real world due to these causes.


Sign in / Sign up

Export Citation Format

Share Document