A revised sea level budget equation to accurately represent physical processes driving sea level rise

Author(s):  
Bramha Dutt Vishwakarma ◽  
Sam Royston ◽  
Ricardo E. M. Riva ◽  
Richard M. Westaway ◽  
Jonathan L. Bamber

<p>The sea level budget (SLB) equates changes in sea surface height (SSH) to the sum of various geo-physical processes that contribute to sea level change. Currently, it is a common practice to explain a change in SSH as a sum of ocean mass and steric change, assuming that solid-Earth motion is corrected for and completely explained by secular visco-elastic relaxation of mantle, due to the process of glacial isostatic adjustment. Yet, since the Solid Earth also responds elastically to changes in present day mass load near the surface of the Earth, we can expect the ocean bottom to respond to ongoing ocean mass changes. This elastic ocean bottom deformation (OBD) has been ignored until very recently because the contribution of ocean mass to sea level rise was thought to be smaller than the steric contribution and the resulting OBD was within observation system uncertainties. However, ocean mass change has increased rapidly in the last 2 decades. Therefore, OBD is no longer negligible and recent studies have shown that its magnitude is similar to that of the deep steric sea level contribution: a global mean of about 0.1 mm/yr but regional changes at some places can be more than 10 times the global mean. Although now an important part of the SLB, especially for regional sea level, OBD is considered by only a few budget studies and they treat it as a spatially uniform correction. This is due to lack of a mathematical framework that defines the contribution of OBD to the SLB. Here, we use a mass-volume framework to derive, for the first time, a SLB equation that partitions SSH change into its component parts accurately and it includes OBD as a physical response of the Earth system. This updated SLB equation is important for various disciplines of Earth Sciences that use the SLB equation: as a constraint to assess the quality of observational time-series; as a means to quantify the importance of each component of sea level change; and, to adequately include all processes in global and regional sea level projections. We recommend using the updated SLB equation for sea level budget studies. We also revisit the contemporary SLB with the updated SLB equation using satellite altimetry data, GRACE data, and ARGO data.</p>

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jinping Wang ◽  
John A. Church ◽  
Xuebin Zhang ◽  
Xianyao Chen

AbstractThe ability of climate models to simulate 20th century global mean sea level (GMSL) and regional sea-level change has been demonstrated. However, the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) sea-level projections have not been rigorously evaluated with observed GMSL and coastal sea level from a global network of tide gauges as the short overlapping period (2007–2018) and natural variability make the detection of trends and accelerations challenging. Here, we critically evaluate these projections with satellite and tide-gauge observations. The observed trends from GMSL and the regional weighted mean at tide-gauge stations confirm the projections under three Representative Concentration Pathway (RCP) scenarios within 90% confidence level during 2007–2018. The central values of the observed GMSL (1993–2018) and regional weighted mean (1970–2018) accelerations are larger than projections for RCP2.6 and lie between (or even above) those for RCP4.5 and RCP8.5 over 2007–2032, but are not yet statistically different from any scenario. While the confirmation of the projection trends gives us confidence in current understanding of near future sea-level change, it leaves open questions concerning late 21st century non-linear accelerations from ice-sheet contributions.


2015 ◽  
Vol 28 (21) ◽  
pp. 8521-8539 ◽  
Author(s):  
Aimée B. A. Slangen ◽  
John A. Church ◽  
Xuebin Zhang ◽  
Didier P. Monselesan

Abstract Changes in Earth’s climate are influenced by internal climate variability and external forcings, such as changes in solar radiation, volcanic eruptions, anthropogenic greenhouse gases (GHG), and aerosols. Although the response of surface temperature to external forcings has been studied extensively, this has not been done for sea level. Here, a range of climate model experiments for the twentieth century is used to study the response of global and regional sea level change to external climate forcings. Both the global mean thermosteric sea level and the regional dynamic sea level patterns show clear responses to anthropogenic forcings that are significantly different from internal climate variability and larger than the difference between models driven by the same external forcing. The regional sea level patterns are directly related to changes in surface winds in response to the external forcings. The spread between different realizations of the same model experiment is consistent with internal climate variability derived from preindustrial control simulations. The spread between the different models is larger than the internal variability, mainly in regions with large sea level responses. Although the sea level responses to GHG and anthropogenic aerosol forcing oppose each other in the global mean, there are differences on a regional scale, offering opportunities for distinguishing between these two forcings in observed sea level change.


2021 ◽  
Author(s):  
Meike Bagge ◽  
Volker Klemann ◽  
Bernhard Steinberger ◽  
Milena Latinović ◽  
Maik Thomas

<p>The interaction between ice sheets and the solid Earth plays an important role for ice-sheet stability and sea-level change and hence for global climate models. Glacial-isostatic adjustment (GIA) models enable simulation of the solid Earth response due to variations in ice-sheet and ocean loading and prediction of the relative sea-level change. Because the viscoelastic response of the solid Earth depends on both ice-sheet distribution and the Earth’s rheology, independent constraints for the Earth structure in GIA models are beneficial. Seismic tomography models facilitate insights into the Earth’s interior, revealing lateral variability of the mantle viscosity that allows studying its relevance in GIA modeling. Especially, in regions of low mantle viscosity, the predicted surface deformations generated with such 3D GIA models differ considerably from those generated by traditional GIA models with radially symmetric structures. But also, the conversion from seismic velocity variations to viscosity is affected by a set of uncertainties. Here, we apply geodynamically constrained 3D Earth structures. We analyze the impact of conversion parameters (reduction factor in Arrhenius law and radial viscosity profile) on relative sea-level predictions. Furthermore, we focus on exemplary low-viscosity regions like the Cascadian subduction zone and southern Patagonia, which coincide with significant ice-mass changes.</p>


2021 ◽  
Author(s):  
Martin Horwath ◽  
Anny Cazenave ◽  

<p>Studies of the global sea-level budget (SLB) and ocean-mass budget (OMB) are essential to assess the reliability of our knowledge of sea-level change and its contributors. The SLB is considered closed if the observed sea-level change agrees with the sum of independently assessed steric and mass contributions. The OMB is considered closed if the observed ocean-mass change is compatible with the sum of assessed mass contributions. </p><p>Here we present results from the Sea-Level Budget Closure (SLBC_cci) project conducted in the framework of ESA’s Climate Change Initiative (CCI). We used data products from CCI projects as well as newly-developed products based on CCI products and on additional data sources. Our focus on products developed in the same framework allowed us to exercise a consistent uncertainty characterisation and its propagation to the budget closure analyses, where the SLB and the OMB are assessed simultaneously. </p><p>We present time series of global mean sea-level changes from satellite altimetry; new time series of the global mean steric component generated from Argo drifter data with incorporation of sea surface temperature data; time series of ocean-mass change derived from GRACE satellite gravimetry; time series of global glacier mass change from a global glacier model; time series of mass changes of the Greenland Ice Sheet and the Antarctic Ice Sheet both from satellite radar altimetry and from GRACE; as well as time series of land water storage change from the WaterGAP global hydrological model. Our budget analyses address the periods 1993–2016 (covered by the satellite altimetry records) and 2003–2016 (covered by GRACE and the Argo drifter system). In terms of the mean rates of change (linear trends), the SLB is closed within uncertainties for both periods, and the OMB, assessable for 2003–2016 only, is also closed within uncertainties. Uncertainties (1-sigma) arising from the combined uncertainties of the elements of the different budgets considered are between 0.26 mm/yr and 0.40 mm/yr, that is, on the order of 10% of the magnitude of global mean sea-level rise, which is 3.05 ± 0.24 mm/yr and 3.65 ± 0.26 mm/yr for 1993-2016 and 2003-2016, respectively. We also assessed the budgets on a monthly time series basis. The statistics of monthly misclosure agrees with the combined uncertainties of the budget elements, which amount to typically 2-3 mm for the 2003–2016 period. We discuss possible origins of the residual misclosure.</p>


2019 ◽  
Vol 11 (10) ◽  
pp. 1176
Author(s):  
Yongcun Cheng ◽  
Qing Xu ◽  
Le Gao ◽  
Xiaofeng Li ◽  
Bin Zou ◽  
...  

Sea State Bias (SSB) contributes to global mean sea level variability and it needs cm-level range adjustment due to the instrumental drift over time. To investigate its variations and correct the global and regional sea level trend precisely, we calculate the temporal and spatial variability of the SSB correction in TOPEX, Jason-1, Jason-2 and Jason-3 missions, separately, as well as in the combined missions over the period 1993–2017. The long-term trend in global mean operational 2D non-parametric SSB correction is about −0.03 ± 0.03 mm/yr, which accounts for 1% of current global mean sea level change rate during 1993–2016. This correction contributes to sea level change rates of −1.27 ± 0.21 mm/yr and −0.26 ± 0.13 mm/yr in TOPEX-A and Jason-2 missions, respectively. The global mean SSB varies up to 7–10 mm during the very strong ENSO events in 1997–1998 and 2015–2016. Furthermore, the TOPEX SSB trend, which is consistent with recently reported sea level trend drift during 1993–1998, may leak into the determined global sea level trend in the period. Moreover, the Jason-1/2 zonal SSB variability is highly correlated with the significant wave height (SWH). On zonal average, SSB correction causes about 1% uncertainty in mean sea level trend. At high SWH regions, the uncertainties grow to 2–4% near the 50°N and 60°S bands. This should be considered in the study of regional sea level variability.


2020 ◽  
Author(s):  
Alexander Todd ◽  
Laure Zanna ◽  
Jonathan Gregory

<p>A rise in global mean sea level is a robust feature of projected anthropogenic climate change using state-of-the-art atmosphere-ocean general circulation models (AOGCMs). However, there is considerable disagreement over the more policy-relevant regional patterns of sea level rise. The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) aims to improve our understanding of the mechanisms controlling regional and dynamic sea level change. In FAFMIP, identical air-sea buoyancy and momentum flux perturbations are applied to an ensemble of different AOGCMs, to sample the uncertainty associated with model structure and physical processes. Our novel implementation applies FAFMIP perturbations to an ensemble of OGCMs. This framework enables an estimate of the unknown atmosphere-ocean feedbacks, by comparing the coupled and ocean-only response to surface flux perturbations.</p><p>Comparing the response to idealised FAFMIP forcing with more realistic, increasing CO2 forcing, much of the spread in regional sea level projections for the North Atlantic and Southern Ocean arises from ocean model structural differences. Ocean-only simulations indicate that only a small proportion of this spread is due to differences in the atmosphere-ocean feedback. Novel tendency diagnostics indicate the relative effect of resolved advection, parametrised eddies, and dianeutral mixing on regional and dynamic sea level change. This study helps to reduce uncertainty in regional sea level projections by refining our estimates of atmosphere-ocean feedbacks and developing our understanding of the physical processes controlling sea level change.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Sitar Karabil ◽  
Edwin H. Sutanudjaja ◽  
Erwin Lambert ◽  
Marc F. P. Bierkens ◽  
Roderik S. W. Van de Wal

Change in Land Water Storage (LWS) is one of the main components driving sea-level rise over the twenty-first century. LWS alteration results from both human activities and climate change. Up to now, all components to sea-level change are usually quantified upon a certain climate change scenario except land water changes. Here, we propose to improve this by analyzing the contribution of LWS to regional sea-level change by considering five Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models forced by three different Representative Concentration Pathway (RCP) greenhouse gas emission scenarios. For this analysis, we used LWS output of the global hydrological and water resources model, PCR-GLOBWB 2, in order to project regional sea-level patterns. Projections of ensemble means indicate a range of LWS-driven sea-level rise with larger differences in projections among climate models than between scenarios. Our results suggest that LWS change will contribute around 10% to the projected global mean sea-level rise by the end of twenty-first century. Contribution of LWS to regional sea-level rise is projected to be considerably larger than the global mean over several regions, up to 60% higher than global average of LWS-driven sea-level rise, including the Pacific islands, the south coast of Africa and the west coast of Australia.


2019 ◽  
Vol 10 (3) ◽  
pp. 179-186
Author(s):  
Jiangcun Zhou ◽  
Heping Sun ◽  
Jianqiao Xu ◽  
Xiaodong Chen ◽  
Xiaoming Cui

Sign in / Sign up

Export Citation Format

Share Document