Continual interaction between the Minahassa subduction interface and the Palu-Koro strike-slip fault in Sulawesi, Indonesia.

Author(s):  
Nicolai Nijholt ◽  
Wim Simons ◽  
Riccardo Riva

<p>Two major fault systems host M<sub>w</sub>>7 earthquakes in Central and Northern Sulawesi, Indonesia: the Minahassa subduction interface and the Palu-Koro strike-slip fault. The Celebes Sea oceanic lithosphere subducts beneath the north arm of Sulawesi at the Minahassa subduction zone. At the western termination of the Minahassa subduction zone, it connects to the left-lateral Palu-Koro strike-slip fault zone. This fault strikes onshore at Palu Bay and then crosses Sulawesi. Interseismic GNSS velocities indicate that the Palu-Koro fault zone accommodates about 4 cm/yr of relative motion in the Palu Bay area, with a ~10 km locking depth. This shallowly locked segment of the Palu-Koro fault around the Palu Bay area ruptured during the devastating, tsunami-generating, 2018 M<sub>w</sub>7.5 Palu earthquake. This complex event highlights the high seismic hazard for the island of Sulawesi.</p><p>We have a >20-year record of GNSS velocities on Sulawesi, where the densest cluster of monument sites surrounds the Palu-Koro fault, specifically around Palu Bay, whereas the rest of the island is less densely covered. High quality estimates of interseismic velocities reveal second-order complex patterns of transient deformation in the wake of major earthquakes: the velocities in northern Sulawesi and around the Palu-Koro fault do not follow their interseismic trends after a major subduction earthquake has occurred, for several years after the event. This effect of transient deformation reaches more than 400km away from the epicentre of the major earthquakes. Surprisingly, a deviation from the background slip rate on the Palu-Koro fault is not accompanied by a deviation from the background (micro)seismic activity.</p><p>We construct a 3D numerical model based on the structural and seismological data in the Sulawesi region. We investigate the post-seismic relaxation pattern from a subduction earthquake and determine whether the slip rate on the Palu-Koro fault changes due to this earthquake through forward model calculations. With a modelling focus on the 1996 M<sub>w</sub>7.9 and 2008 M<sub>w</sub>7.4 earthquakes that ruptured the Minahassa subduction interface, this study outlines the triggering of transient deformation and continual interaction between the Minahassa subduction interface and the Palu-Koro strike-slip fault.</p>

Tectonics ◽  
2021 ◽  
Vol 40 (2) ◽  
Author(s):  
Jingxing Yu ◽  
R. T. Walker ◽  
E. J. Rhodes ◽  
Peizhen Zhang ◽  
Chaopeng Li ◽  
...  

Tectonics ◽  
2021 ◽  
Author(s):  
Richard Thomas Walker ◽  
Y. Bezmenov ◽  
G. Begenjev ◽  
S. Carolin ◽  
N. Dodds ◽  
...  

Geosphere ◽  
2011 ◽  
Vol 7 (5) ◽  
pp. 1159-1174 ◽  
Author(s):  
M. Fattahi ◽  
R.T. Walker ◽  
M. Talebian ◽  
R.A. Sloan ◽  
A. Rasheedi

2004 ◽  
Vol 26 (9) ◽  
pp. 1615-1632 ◽  
Author(s):  
Guillermo Booth-Rea ◽  
José-Miguel Azañón ◽  
Antonio Azor ◽  
Vı́ctor Garcı́a-Dueñas

2020 ◽  
Vol 27 (1) ◽  
pp. petgeo2019-144
Author(s):  
Ziyi Wang ◽  
Zhiqian Gao ◽  
Tailiang Fan ◽  
Hehang Zhang ◽  
Lixin Qi ◽  
...  

The SB1 strike-slip fault zone, which developed in the north of the Shuntuo Low Uplift of the Tarim Basin, plays an essential role in reservoir formation and hydrocarbon accumulation in deep Ordovician carbonate rocks. In this research, through the analysis of high-quality 3D seismic volumes, outcrop, drilling and production data, the hydrocarbon-bearing characteristics of the SB1 fault are systematically studied. The SB1 fault developed sequentially in the Paleozoic and formed as a result of a three-fold evolution: Middle Caledonian (phase III), Late Caledonian–Early Hercynian and Middle–Late Hercynian. Multiple fault activities are beneficial to reservoir development and hydrocarbon filling. In the Middle–Lower Ordovician carbonate strata, linear shear structures without deformation segments, pull-apart structure segments and push-up structure segments alternately developed along the SB1 fault. Pull-apart structure segments are the most favourable areas for oil and gas accumulation. The tight fault core in the centre of the strike-slip fault zone is typically a low-permeability barrier, whilst the damage zones on both sides of the fault core are migration pathways and accumulation traps for hydrocarbons, leading to heterogeneity in the reservoirs controlled by the SB1 fault. This study provides a reference for hydrocarbon exploration and development of similar deep-marine carbonate reservoirs controlled by strike-slip faults in the Tarim Basin and similar ancient hydrocarbon-rich basins.


Solid Earth ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 95-124 ◽  
Author(s):  
Bernhard Schuck ◽  
Anja M. Schleicher ◽  
Christoph Janssen ◽  
Virginia G. Toy ◽  
Georg Dresen

Abstract. New Zealand's Alpine Fault is a large, plate-bounding strike-slip fault, which ruptures in large (Mw>8) earthquakes. We conducted field and laboratory analyses of fault rocks to assess its fault zone architecture. Results reveal that the Alpine Fault Zone has a complex geometry, comprising an anastomosing network of multiple slip planes that have accommodated different amounts of displacement. This contrasts with the previous perception of the Alpine Fault Zone, which assumes a single principal slip zone accommodated all displacement. This interpretation is supported by results of drilling projects and geophysical investigations. Furthermore, observations presented here show that the young, largely unconsolidated sediments that constitute the footwall at shallow depths have a significant influence on fault gouge rheological properties and structure.


2015 ◽  
Vol 24 ◽  
pp. 1-20 ◽  
Author(s):  
Gürol SEYİTOĞLU ◽  
G. Berkan ECEVİTOĞLU ◽  
Bülent KAYPAK ◽  
Yücel GÜNEY ◽  
Muammer TÜN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document