scholarly journals The structure and late Quaternary slip rate of the Rafsanjan strike-slip fault, SE Iran

Geosphere ◽  
2011 ◽  
Vol 7 (5) ◽  
pp. 1159-1174 ◽  
Author(s):  
M. Fattahi ◽  
R.T. Walker ◽  
M. Talebian ◽  
R.A. Sloan ◽  
A. Rasheedi
Tectonics ◽  
2021 ◽  
Vol 40 (2) ◽  
Author(s):  
Jingxing Yu ◽  
R. T. Walker ◽  
E. J. Rhodes ◽  
Peizhen Zhang ◽  
Chaopeng Li ◽  
...  

2013 ◽  
Vol 118 (10) ◽  
pp. 5681-5698 ◽  
Author(s):  
G. E. Campbell ◽  
R. T. Walker ◽  
K. Abdrakhmatov ◽  
JL. Schwenninger ◽  
J. Jackson ◽  
...  

Tectonics ◽  
2021 ◽  
Author(s):  
Richard Thomas Walker ◽  
Y. Bezmenov ◽  
G. Begenjev ◽  
S. Carolin ◽  
N. Dodds ◽  
...  

2016 ◽  
Vol 22 (1-2) ◽  
Author(s):  
Petr Špaček ◽  
Vít Ambrož

Preliminary results of a research into the late Quaternary slip of a major fault in the seismically active Upper Morava Basin are given. Three trenches, up to 6 m deep, were excavated at the foot of the Kosíř Fault scarp near Stařechovice and Čelechovice. The exposed complex sequences of colluvium and loess, now only partly dated by OSL and 14C, is heavily faulted. The faulting is explained by a tectonic slip at the Kosíř Fault and, in the Stařechovice trench, also by simultaneous slope deformations. None of the faults do off set the Holocene topsoil but the youngest of them were clearly active aft er the deposition of the youngest loess and indicate the slip of up to 1.4 m in Late Pleistocene. In Čelechovice trenches the minimum vertical throw of 4 m is indicated for the lower part of the sequence with assumed Late Pleistocene age. The geometry of the deformed zone suggests an oblique normal faulting with significant strike-slip component. The sense of shearing in the horizontal plane was not resolved. Minimum tectonic slip rate of 0.1‒0.3 mm/year in Late Pleistocene is suggested but this must be confi rmed by new dating. Our observations reveal surprisingly young and large deformation which may suggest a temporary increase of tectonic activity during Late Pleistocene.


2020 ◽  
Author(s):  
Nicolai Nijholt ◽  
Wim Simons ◽  
Riccardo Riva

<p>Two major fault systems host M<sub>w</sub>>7 earthquakes in Central and Northern Sulawesi, Indonesia: the Minahassa subduction interface and the Palu-Koro strike-slip fault. The Celebes Sea oceanic lithosphere subducts beneath the north arm of Sulawesi at the Minahassa subduction zone. At the western termination of the Minahassa subduction zone, it connects to the left-lateral Palu-Koro strike-slip fault zone. This fault strikes onshore at Palu Bay and then crosses Sulawesi. Interseismic GNSS velocities indicate that the Palu-Koro fault zone accommodates about 4 cm/yr of relative motion in the Palu Bay area, with a ~10 km locking depth. This shallowly locked segment of the Palu-Koro fault around the Palu Bay area ruptured during the devastating, tsunami-generating, 2018 M<sub>w</sub>7.5 Palu earthquake. This complex event highlights the high seismic hazard for the island of Sulawesi.</p><p>We have a >20-year record of GNSS velocities on Sulawesi, where the densest cluster of monument sites surrounds the Palu-Koro fault, specifically around Palu Bay, whereas the rest of the island is less densely covered. High quality estimates of interseismic velocities reveal second-order complex patterns of transient deformation in the wake of major earthquakes: the velocities in northern Sulawesi and around the Palu-Koro fault do not follow their interseismic trends after a major subduction earthquake has occurred, for several years after the event. This effect of transient deformation reaches more than 400km away from the epicentre of the major earthquakes. Surprisingly, a deviation from the background slip rate on the Palu-Koro fault is not accompanied by a deviation from the background (micro)seismic activity.</p><p>We construct a 3D numerical model based on the structural and seismological data in the Sulawesi region. We investigate the post-seismic relaxation pattern from a subduction earthquake and determine whether the slip rate on the Palu-Koro fault changes due to this earthquake through forward model calculations. With a modelling focus on the 1996 M<sub>w</sub>7.9 and 2008 M<sub>w</sub>7.4 earthquakes that ruptured the Minahassa subduction interface, this study outlines the triggering of transient deformation and continual interaction between the Minahassa subduction interface and the Palu-Koro strike-slip fault.</p>


2016 ◽  
Vol 43 (1) ◽  
pp. 162-173 ◽  
Author(s):  
Duo Wang ◽  
Gong-Ming Yin ◽  
Xu-Long Wang ◽  
Chun-Ru Liu ◽  
Fei Han ◽  
...  

Abstract The Gyaring Co Fault (GCF) is an active right-lateral strike-slip fault in central Tibet that accommodates convergence between India and Asia in the interior of the Tibetan Plateau. The average long-term slip rate of the fault remains controversial, given the absence of absolute age data of faulted geomorphic features. We have applied optically stimulated luminescence (OSL) dating to the northern segment of the GCF, revealing that the GCF has displaced alluvial fans at Aerqingsang by 500 ± 100 m since their deposition at ~109 ka, yielding a slip rate of 4.6 ± 1.0 mm/yr. A slip rate of 3.4 ± 0.4 mm/yr is inferred from analysis of an alluvial fan with an offset of 65 ± 5 m (~19 ka) at Quba site 1. The Holocene slip rate is estimated to be 1.9 ± 0.3 mm/yr, as inferred from the basal age (~8.3 ka) of terrace T1 that has a gully displacement of 16 ± 2 m at Quba site 2. These slip rates are generally lower early estimates (10–20 mm/yr), but are consistent with more recent results (2.2–4.5 mm/yr) and GPS data for other strike-slip faults in this region, indicating that deformation may be distributed across the entire Tibetan Plateau. Moreover, we suggest that the slip rate along the GCF may have decreased slightly during the late Quaternary.


Sign in / Sign up

Export Citation Format

Share Document