scholarly journals Slip‐rate on the Main Köpetdag (Kopeh Dagh) Strike‐slip fault, Turkmenistan, and the active tectonics of the South Caspian

Tectonics ◽  
2021 ◽  
Author(s):  
Richard Thomas Walker ◽  
Y. Bezmenov ◽  
G. Begenjev ◽  
S. Carolin ◽  
N. Dodds ◽  
...  

Geosphere ◽  
2011 ◽  
Vol 7 (5) ◽  
pp. 1159-1174 ◽  
Author(s):  
M. Fattahi ◽  
R.T. Walker ◽  
M. Talebian ◽  
R.A. Sloan ◽  
A. Rasheedi


Tectonics ◽  
2021 ◽  
Vol 40 (2) ◽  
Author(s):  
Jingxing Yu ◽  
R. T. Walker ◽  
E. J. Rhodes ◽  
Peizhen Zhang ◽  
Chaopeng Li ◽  
...  


Tectonics ◽  
2021 ◽  
Author(s):  
Zongkai Hu ◽  
Xiaoping Yang ◽  
Haibo Yang ◽  
Weiliang Huang ◽  
Guodong Wu ◽  
...  


2020 ◽  
Author(s):  
Xiaodong Yang ◽  
Satish C. Singh ◽  
Ian Deighton

<p><span>The Banda Arc system is sited in a junction of </span>convergence between the Eurasian, Indo-Australian, Philippine and Pacific plates<span>. It </span>has a remarkable 180° curve in the Benioff zone<span>. Two fundamental ideas have been invoked to explain this significant subduction-arc orientation change: (1) bent subduction zone around the Banda Sea (Hamilton, 1979; Spakman and Hall, 2010; Hall, 2012)</span>, or (2) oppositely dipping subduction zones (Cardwell and Isacks, 1978; McCaffrey, 1989), b<span>ut no general agreement exists as to the cause of this curvature. However, a WNW-trending strike-slip fault, i.e. Seram-Kumawa fault, is observed at the north-eastern end of the Arc, cutting through the Seram accretionary wedge, prism and trench and seems to continue on the subducting plate (Hall et al., 2017). This fault is either inactive or locked temporarily at the present day, because there are very few strike-slip events along its trend while there are many thrust earthquakes on its north and northwest side. A few essential questions remain unanswered about this fault in relation to the evolution of the Banda Arc. For instance, what is the origin of this fault, what role does it play in the tectonic processes and large earthquakes along the Banda Arc. Could this fault eventually break-up the Banda Arc? What is its tectonic implication on the evolution of other highly curved subduction-arc systems? To address these questions, we will carry out a comprehensive investigation into active tectonics and seismicity occurrence along the northeast Banda Arc using high-resolution bathymetry, 2D marine seismic profiles and earthquake data. </span></p><p><strong>Reference:</strong></p><p><span><span>Cardwell, R.K. and Isacks, B.L., 1978. Geometry of the subducted lithosphere beneath the Banda Sea in eastern Indonesia from seismicity and fault plane solutions. Journal of Geophysical Research: Solid Earth, 83(B6): 2825-2838.</span></span></p><p><span>Hall, R., 2012. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570: 1-41.</span></p><p><span>Hall, R., Patria, A., Adhitama, R., Pownall, J.M. and White, L.T., 2017. Seram, the Seram Trough, the Aru Trough, the Tanimbar Trough and the Weber Deep: A new look at major structures in the eastern Banda Arc.</span></p><p><span>Hamilton, W.B., 1979. Tectonics of the Indonesian region. US Govt. Print. Off.</span></p><p><span>McCaffrey, R., 1989. Seismological constraints and speculations on Banda Arc tectonics. Netherlands Journal of Sea Research, 24(2-3): 141-152.</span></p><p><span>Spakman, W. and Hall, R., 2010. Surface deformation and slab–mantle interaction during Banda arc subduction rollback. Nature Geoscience, 3(8): 562.</span></p><p> </p>



2020 ◽  
Author(s):  
Nicolai Nijholt ◽  
Wim Simons ◽  
Riccardo Riva

<p>Two major fault systems host M<sub>w</sub>>7 earthquakes in Central and Northern Sulawesi, Indonesia: the Minahassa subduction interface and the Palu-Koro strike-slip fault. The Celebes Sea oceanic lithosphere subducts beneath the north arm of Sulawesi at the Minahassa subduction zone. At the western termination of the Minahassa subduction zone, it connects to the left-lateral Palu-Koro strike-slip fault zone. This fault strikes onshore at Palu Bay and then crosses Sulawesi. Interseismic GNSS velocities indicate that the Palu-Koro fault zone accommodates about 4 cm/yr of relative motion in the Palu Bay area, with a ~10 km locking depth. This shallowly locked segment of the Palu-Koro fault around the Palu Bay area ruptured during the devastating, tsunami-generating, 2018 M<sub>w</sub>7.5 Palu earthquake. This complex event highlights the high seismic hazard for the island of Sulawesi.</p><p>We have a >20-year record of GNSS velocities on Sulawesi, where the densest cluster of monument sites surrounds the Palu-Koro fault, specifically around Palu Bay, whereas the rest of the island is less densely covered. High quality estimates of interseismic velocities reveal second-order complex patterns of transient deformation in the wake of major earthquakes: the velocities in northern Sulawesi and around the Palu-Koro fault do not follow their interseismic trends after a major subduction earthquake has occurred, for several years after the event. This effect of transient deformation reaches more than 400km away from the epicentre of the major earthquakes. Surprisingly, a deviation from the background slip rate on the Palu-Koro fault is not accompanied by a deviation from the background (micro)seismic activity.</p><p>We construct a 3D numerical model based on the structural and seismological data in the Sulawesi region. We investigate the post-seismic relaxation pattern from a subduction earthquake and determine whether the slip rate on the Palu-Koro fault changes due to this earthquake through forward model calculations. With a modelling focus on the 1996 M<sub>w</sub>7.9 and 2008 M<sub>w</sub>7.4 earthquakes that ruptured the Minahassa subduction interface, this study outlines the triggering of transient deformation and continual interaction between the Minahassa subduction interface and the Palu-Koro strike-slip fault.</p>



2013 ◽  
Vol 118 (10) ◽  
pp. 5681-5698 ◽  
Author(s):  
G. E. Campbell ◽  
R. T. Walker ◽  
K. Abdrakhmatov ◽  
JL. Schwenninger ◽  
J. Jackson ◽  
...  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luis Astudillo-Sotomayor ◽  
Julius Jara-Muñoz ◽  
Daniel Melnick ◽  
Joaquín Cortés-Aranda ◽  
Andrés Tassara ◽  
...  

AbstractIn active tectonic settings dominated by strike-slip kinematics, slip partitioning across subparallel faults is a common feature; therefore, assessing the degree of partitioning and strain localization is paramount for seismic hazard assessments. Here, we estimate a slip rate of 18.8 ± 2.0 mm/year over the past 9.0 ± 0.1 ka for a single strand of the Liquiñe-Ofqui Fault System, which straddles the Main Cordillera in Southern Chile. This Holocene rate accounts for ~ 82% of the trench-parallel component of oblique plate convergence and is similar to million-year estimates integrated over the entire fault system. Our results imply that strain localizes on a single fault at millennial time scale but over longer time scales strain localization is not sustained. The fast millennial slip rate in the absence of historical Mw > 6.5 earthquakes along the Liquiñe-Ofqui Fault System implies either a component of aseismic slip or Mw ~ 7 earthquakes involving multi-trace ruptures and > 150-year repeat times. Our results have implications for the understanding of strike-slip fault system dynamics within volcanic arcs and seismic hazard assessments.



2020 ◽  
Vol 21 (4) ◽  
pp. 177
Author(s):  
Maruf M Mukti ◽  
Ilham Arisbaya ◽  
Haryadi Permana

This paper presents a review of several published seismic reflection and seismicity data and analyzes of high-resolution bathymetry data to revise the exact location and reveal detail characteristics of a strike-slip fault zone that formed the southernmost segment of the Sumatran Fault (SF). Previous works interpreted this fault segment as a horst structure to the south of a pull-apart basin. We observe a clear linear trace of dissected seafloor parallels to SF in the high-resolution bathymetric map. This structure extends from the south of a pull-apart basin in the northwest to the Sunda accretionary wedge farther southeast. This lineament exhibits a narrow valley and a linear ridge that in the subsurface are interpreted as negative and positive flower structures, respectively. The structure exhibits a vertical fault plane and appears to have deformed the accretionary wedge sediments and basement at depth. A cluster of shallow seismicity is observed along this NW-trending fault zone, indicating the activity of this zone. Here, we proposed this strike-slip fault as the Ujung Kulon Fault that marks the southeasternmost segment of the SF zone. This segment deformed the area of the Sumatra-Java forearc basin and terminated in accretionary wedge near the trench. The accumulated strain within UKF may trigger large earthquake in the future, close to the highly populated areas in the coast of Sumatra and Java.Keywords: Strike-slip fault, Sumatra Fault, Ujung Kulon Fault, segmentation, earthquake.



2021 ◽  
pp. 100032
Author(s):  
Jinrui Liu ◽  
Zhikun Ren ◽  
Wei Min ◽  
Guanghao Ha ◽  
Jinghao Lei


Sign in / Sign up

Export Citation Format

Share Document