Impact of a-priori SRP models and ECOM models on GNSS precise orbit determination

Author(s):  
Xiao Chang ◽  
Benjamin Männel ◽  
Harald Schuh ◽  
Roman Galas

<p>As one of the products of the International GNSS Service (IGS), precise orbits for Global Navigation Satellite Systems (GNSS) play an important role in many geoscientific applications. Currently, the precision and consistency of GNSS orbits are still limited by insufficient knowledge of spacecraft response to non-conservative perturbations, of which the solar radiation pressure (SRP) has the strongest influence. SRP modeling strategies adopted by IGS Analysis Centers (ACs) can be categorized: 1) analytical SRP model like the ROCK models (Fliegel et al. 1992), 2) empirical representation, for example by estimating ECOM parameters (Beutler et al. 1994, Springer et al. 1999a, and Arnold et al. 2015), and 3) the combination of both, hybrid empirical-physical SRP model such as adjustable box-wing model (e.g. Rodriguez-Solano et al. 2012). While empirical models fit the observations well, the loss of physical explanation may cause unexpected systematic errors. Uncertainties in the a-priori SRP models, which rely on the optical coefficients and surface structure of the satellites, can also degrade the determined orbit systematically. Using a hybrid model, i.e. estimation of empirical parameters on top of a-priori model, is expected to take the advantage of the existing satellite properties and to compensate for the inaccuracy related to the satellite properties based on observations. Thus, different hybrid models have to be tested for each constellation and block type.</p><p> </p><p>In this study, we assess the GNSS precise orbit determination (POD) based on different setups of a-priori models and ECOM parametrization. The results will be presented as follows: 1) first, the orbits difference introduced by a-priori model is analyzed by comparing orbit with the one based on pure ECOM models. 2) Second, the effect of a-priori models will be discussed by assessing the estimated ECOM parameters. 3) Third, the derived orbit will be compared with the final orbits of selected IGS ACs. 4) The effect of the selected SRP modeling strategy on geodetic parameters will be discussed with special focus on the estimated station coordinates.</p>

2021 ◽  
Vol 13 (17) ◽  
pp. 3388
Author(s):  
Longjiang Tang ◽  
Jungang Wang ◽  
Huizhong Zhu ◽  
Maorong Ge ◽  
Aigong Xu ◽  
...  

For Global Positioning System (GPS) precise orbit determination (POD), the solar radiation pressure (SRP) is the dominant nongravitational perturbation force. Among the current SRP models, the ECOM and box-wing models are widely used in the International GNSS Service (IGS) community. However, the performance of different models varies over different GPS satellites. In this study, we investigate the performances of different SRP models, including the box-wing and adjustable box-wing as a priori models, and ECOM1 and ECOM2 as parameterization models, in the GPS POD solution from 2017 to 2019. Moreover, we pay special attention to the handling of the shadow factor in the SRP modeling for eclipsing satellites, which is critical to achieve high-precision POD solutions but has not yet been fully investigated. We demonstrate that, as an a priori SRP model, the adjustable box-wing has better performance than the box-wing model by up to 5 mm in the orbit day boundary discontinuity (DBD) statistics, with the largest improvement observed on the BLOCK IIR satellites using the ECOM1 as a parameterization SRP model. The box-wing model shows an insignificant orbit improvement serving as the a priori SRP model. For the eclipsing satellites, the three-dimensional (3D) root mean square (RMS) values of orbit DBD are improved when the shadow factor is applied only in the D direction (pointing toward to Sun) than that in the three directions (D, Y, and B) in the satellite frame. Different SRP models have comparable performance in terms of the Earth rotation parameter (ERP) agreement with the IERS EOP 14C04 product, whereas the magnitude of the length of day (LoD) annual signal is reduced when the shadow factor is applied in the D direction than in the three directions. This study clarifies how the shadow factor should be applied in the GPS POD solution and demonstrates that the a priori adjustable box-wing model combined with ECOM1 is more suitable for high-precision GPS POD solutions, which is useful for the further GNSS data analysis.


2021 ◽  
Author(s):  
Cyril Kobel ◽  
Daniel Arnold ◽  
Adrian Jäggi

<p>Global Navigation Satellite Systems such as the Global Positioning System (GPS) are a unique tool for deriving very precise orbits of Low Earth orbiting (LEO) satellites equipped with onboard GPS receivers. LEO precise orbit determination (POD) requires the proper modeling of antenna phase center variations (PCVs) for both the GPS transmitter and the LEO receiver antennas. While for the GPS antennas the nadir-dependent values from the official absolute antenna phase center model igs14.atx of the International GNSS Service (IGS), consistent with the underlying GPS orbit and clock products, are used, official PCV maps are usually not available for the LEO receiver antennas. If these variations are not considered, however, this may result in systematic errors in the derived LEO orbits. LEO PCV maps can be determined and exploited in different ways. One possibility is to use the PCV maps from ground calibrations provided by the manufacturer, which usually do not reflect, however, the influence of error sources which are additionally encountered in the actual spacecraft environment, e.g., near-field multipath. Alternatively, one can make use of GPS measurements and POD results to estimate the PCV map empirically, as it is done in this study.</p><p>In this study, the influence of different attitude modes on Jason-3 POD using GPS observations and PCV map estimation is investigated. As Jason-3 in an altimetry satellite, its main objective is to measure global sea-level rise. Therefore, it is of particular importance to precisely determine the radial component of the orbit and proper PCV modeling is of high importance. As Jason-3 is experiencing different attitude modes, yaw-steering and fixed-yaw attitude with either the positive or negative x-axis pointing in the direction of flight, PCV maps are expected to be better disentangled from other error sources. In this study, we are analyzing PCV maps determined from residual stacking using GPS data from the different attitude modes and from different orbit parametrizations. First results indicate that PCV maps estimated from time spans of different attitude modes differ and systematic orbit differences are occurring in a reduced-dynamic POD.</p>


2020 ◽  
Vol 3 (1) ◽  
pp. 316-321
Author(s):  
Sermet Ogutcu ◽  
Salih Alcay ◽  
Omer Faruk Atiz

In recent years, the advances of the new Global Navigation Satellite System (GNSS) constellations including, Galileo and BeiDou (BDS), have undergone dramatic changes. Some analysis centers (ACs) produce precise orbit and clock products of Galileo and BeiDou constellations. Currently, three types of Galileo and BeiDou satellite orbit and clock products are available – namely, precise, rapid and ultra-rapid products –. Ultra-rapid and rapid products are generally used for time-constrained applications. Precise orbit determination (POD) of Galileo and BeiDou is much challenging compared with GPS and GLONASS constellations due to the officially undetermined receiver phase center offset (PCO), variations (PCV) of Galileo and BeiDou constellations and, also some other not well-defined factors such as yaw-attitude models and solar radiation pressure. In this study, GALILEO orbit accuracy is investigated using rapid products produced by Center for Orbit Determination in Europe (CODE) GeoForschungsZentrum (GFZ) and Wuhan University (WUHAN), while GFZ and WUHAN rapid products are used for BeiDou constellation only. One month (January) of data in 2020 is used to compute errors of radial, along-track, and cross-track components of Galileo and BeiDou orbit derived by rapid products compared with the CODE final Multi-GNSS Experiment (MGEX) product which is assumed as the reference product. The results show that no significant differences between the products are found for Galileo orbit. For BeiDou orbit, WUHAN rapid product produced the smaller root mean square errors (RMSEs) of orbit components compared with the GFZ rapid product.


GPS Solutions ◽  
2020 ◽  
Vol 24 (2) ◽  
Author(s):  
Yongqiang Yuan ◽  
Xingxing Li ◽  
Yiting Zhu ◽  
Yun Xiong ◽  
Jiande Huang ◽  
...  

1994 ◽  
Vol 31 (5) ◽  
pp. 830-833 ◽  
Author(s):  
Yvonne Vigue ◽  
Stephen M. Lichten ◽  
Ron J. Muellerschoen ◽  
Geoff Blewitt ◽  
Michael B. Heflin

2020 ◽  
Author(s):  
Xinghan Chen ◽  
Maorong Ge ◽  
Harald Schuh

<p>Currently, with the rapid development of the third generation of BeiDou satellite system (BDS-3), the corresponding solar radiation pressure (SRP) forces should be well and soon modeled in order to enhance the performance of precise orbit determination (POD) and precise clock estimation (PCE) for high-precision applications. In this contribution, the BDS-3 post-processed and ultra-rapid PODs have been realized by fully exploiting data provided by the International GNSS Service (IGS). We firstly test the Center for Orbit Determination in Europe (CODE) SRP model (ECOM1) and ECOM2 models and notice a large disagreement of overlapping orbits at the boundary of two adjacent days within an eclipse period. The reason for this could be that the ECOM2 model is over-parameterized or an extra periodic SRP term should be considered. Furthermore, our numerical analyses confirm that the cosinus terms must be excluded and the fourth- and sixth-order SRP sinus terms are significant in the Sun direction for the SRP model of BDS-3 satellites. Therefore, a new SRP model is developed herein to improve BDS-3 orbits, especially for eclipse season. Using the new SRP model, the large fluctuations of 20 cm can be reduced to below 10 cm for the radial-track component of overlapping orbits over eclipse seasons and SLR residuals are improved by a factor of 2 compared to that of ECOM1 and ECOM2. For the predicted orbits, the improvement due to the new SRP model is also demonstrated and the mean offsets of overlapping orbit differences over the eclipse periods can be reduced from -9.3 cm, -18.9 cm, and 39.9 cm to -5.5 cm, 8.3 cm, and 12.7 cm in the radial, cross, and along directions, respectively.</p>


2021 ◽  
Vol 133 (4) ◽  
Author(s):  
K. Sośnica ◽  
G. Bury ◽  
R. Zajdel ◽  
K. Kazmierski ◽  
J. Ventura-Traveset ◽  
...  

AbstractThe first pair of satellites belonging to the European Global Navigation Satellite System (GNSS)—Galileo—has been accidentally launched into highly eccentric, instead of circular, orbits. The final height of these two satellites varies between 17,180 and 26,020 km, making these satellites very suitable for the verification of the effects emerging from general relativity. We employ the post-Newtonian parameterization (PPN) for describing the perturbations acting on Keplerian orbit parameters of artificial Earth satellites caused by the Schwarzschild, Lense–Thirring, and de Sitter general relativity effects. The values emerging from PPN numerical simulations are compared with the approximations based on the Gaussian perturbations for the temporal variations of the Keplerian elements of Galileo satellites in nominal, near-circular orbits, as well as in the highly elliptical orbits. We discuss what kinds of perturbations are detectable using the current accuracy of precise orbit determination of artificial Earth satellites, including the expected secular and periodic variations, as well as the constant offsets of Keplerian parameters. We found that not only secular but also periodic variations of orbit parameters caused by general relativity effects exceed the value of 1 cm within 24 h; thus, they should be fully detectable using the current GNSS precise orbit determination methods. Many of the 1-PPN effects are detectable using the Galileo satellite system, but the Lense–Thirring effect is not.


2021 ◽  
Vol 13 (15) ◽  
pp. 3033
Author(s):  
Hui Wei ◽  
Jiancheng Li ◽  
Xinyu Xu ◽  
Shoujian Zhang ◽  
Kaifa Kuang

In this paper, we propose a new reduced-dynamic (RD) method by introducing the second-order time-difference position (STP) as additional pseudo-observations (named the RD_STP method) for the precise orbit determination (POD) of low Earth orbiters (LEOs) from GPS observations. Theoretical and numerical analyses show that the accuracies of integrating the STPs of LEOs at 30 s intervals are better than 0.01 m when the forces (<10−5 ms−2) acting on the LEOs are ignored. Therefore, only using the Earth’s gravity model is good enough for the proposed RD_STP method. All unmodeled dynamic models (e.g., luni-solar gravitation, tide forces) are treated as the error sources of the STP pseudo-observation. In addition, there are no pseudo-stochastic orbit parameters to be estimated in the RD_STP method. Finally, we use the RD_STP method to process 15 days of GPS data from the GOCE mission. The results show that the accuracy of the RD_STP solution is more accurate and smoother than the kinematic solution in nearly polar and equatorial regions, and consistent with the RD solution. The 3D RMS of the differences between the RD_STP and RD solutions is 1.93 cm for 1 s sampling. This indicates that the proposed method has a performance comparable to the RD method, and could be an alternative for the POD of LEOs.


Sign in / Sign up

Export Citation Format

Share Document