scholarly journals Investigating the GALILEO and BeiDou orbit accuracy derived from rapid products

2020 ◽  
Vol 3 (1) ◽  
pp. 316-321
Author(s):  
Sermet Ogutcu ◽  
Salih Alcay ◽  
Omer Faruk Atiz

In recent years, the advances of the new Global Navigation Satellite System (GNSS) constellations including, Galileo and BeiDou (BDS), have undergone dramatic changes. Some analysis centers (ACs) produce precise orbit and clock products of Galileo and BeiDou constellations. Currently, three types of Galileo and BeiDou satellite orbit and clock products are available – namely, precise, rapid and ultra-rapid products –. Ultra-rapid and rapid products are generally used for time-constrained applications. Precise orbit determination (POD) of Galileo and BeiDou is much challenging compared with GPS and GLONASS constellations due to the officially undetermined receiver phase center offset (PCO), variations (PCV) of Galileo and BeiDou constellations and, also some other not well-defined factors such as yaw-attitude models and solar radiation pressure. In this study, GALILEO orbit accuracy is investigated using rapid products produced by Center for Orbit Determination in Europe (CODE) GeoForschungsZentrum (GFZ) and Wuhan University (WUHAN), while GFZ and WUHAN rapid products are used for BeiDou constellation only. One month (January) of data in 2020 is used to compute errors of radial, along-track, and cross-track components of Galileo and BeiDou orbit derived by rapid products compared with the CODE final Multi-GNSS Experiment (MGEX) product which is assumed as the reference product. The results show that no significant differences between the products are found for Galileo orbit. For BeiDou orbit, WUHAN rapid product produced the smaller root mean square errors (RMSEs) of orbit components compared with the GFZ rapid product.

2019 ◽  
Vol 11 (16) ◽  
pp. 1949 ◽  
Author(s):  
Xiaolei Dai ◽  
Yidong Lou ◽  
Zhiqiang Dai ◽  
Caibo Hu ◽  
Yaquan Peng ◽  
...  

Precise orbit products are essential and a prerequisite for global navigation satellite system (GNSS) applications, which, however, are unavailable or unusable when satellites are undertaking maneuvers. We propose a clock-constrained reverse precise point positioning (RPPP) method to generate the rather precise orbits for GNSS maneuvering satellites. In this method, the precise clock estimates generated by the dynamic precise orbit determination (POD) processing before maneuvering are modeled and predicted to the maneuvering periods and they constrain the RPPP POD during maneuvering. The prediction model is developed according to different clock types, of which the 2-h prediction error is 0.31 ns and 1.07 ns for global positioning system (GPS) Rubidium (Rb) and Cesium (Cs) clocks, and 0.45 ns and 0.60 ns for the Beidou navigation satellite system (BDS) geostationary orbit (GEO) and inclined geosynchronous orbit (IGSO)/Median Earth orbit (MEO) satellite clocks, respectively. The performance of this proposed method is first evaluated using the normal observations without maneuvers. Experiment results show that, without clock-constraint, the average root mean square (RMS) of RPPP orbit solutions in the radial, cross-track and along-track directions is 69.3 cm, 5.4 cm and 5.7 cm for GPS satellites and 153.9 cm, 12.8 cm and 10.0 cm for BDS satellites. When the constraint of predicted satellite clocks is introduced, the average RMS is dramatically reduced in the radial direction by a factor of 7–11, with the value of 9.7 cm and 13.4 cm for GPS and BDS satellites. At last, the proposed method is further tested on the actual GPS and BDS maneuver events. The clock-constrained RPPP POD solution is compared to the forward and backward integration orbits of the dynamic POD solution. The resulting orbit differences are less than 20 cm in all three directions for GPS satellite, and less than 30 cm in the radial and cross-track directions and up to 100 cm in the along-track direction for BDS satellites. From the orbit differences, the maneuver start and end time is detected, which reveals that the maneuver duration of GPS satellites is less than 2 min, and the maneuver events last from 22.5 min to 107 min for different BDS satellites.


2019 ◽  
Vol 11 (24) ◽  
pp. 3024
Author(s):  
Yang Liu ◽  
Yanxiong Liu ◽  
Ziwen Tian ◽  
Xiaolei Dai ◽  
Yun Qing ◽  
...  

The Global Navigation Satellite System (GNSS) ultra-rapid precise orbits are crucial for global and wide-area real-time high-precision applications. The solar radiation pressure (SRP) model is an important factor in precise orbit determination. The real-time orbit determination is generally less accurate than the post-processed one and may amplify the instability and mismodeling of SRP models. Also, the impact of different SRP models on multi-GNSS real-time predicted orbits demands investigations. We analyzed the impact of the ECOM 1 and ECOM 2 models on multi-GNSS ultra-rapid orbit determination in terms of ambiguity resolution performance, real-time predicted orbit overlap precision, and satellite laser ranging (SLR) validation. The multi-GNSS observed orbital arc and predicted orbital arcs of 1, 3, 6, and 24 h are compared. The simulated real-time experiment shows that for GLONASS and Galileo ultra-rapid orbits, compared to ECOM 1, ECOM 2 increased the ambiguity fixing rate to 89.3% and 83.1%, respectively, and improves the predicted orbit accuracy by 9.2% and 27.7%, respectively. For GPS ultra-rapid orbits, ECOM 2 obtains a similar ambiguity fixing rate as ECOM 1 but slightly better orbit overlap precision. For BDS GEO ultra-rapid orbits, ECOM 2 obtains better overlap precision and SLR residuals, while for BDS IGSO and MEO ultra-rapid orbits, ECOM 1 obtains better orbit overlap precision and SLR residuals.


2019 ◽  
Vol 11 (21) ◽  
pp. 2587
Author(s):  
Qin ◽  
Huang ◽  
Zhang ◽  
Wang ◽  
Yan ◽  
...  

In order to provide better service for the Asia-Pacific region, the BeiDou navigation satellite system (BDS) is designed as a constellation containing medium earth orbit (MEO), geostationary earth orbit (GEO), and inclined geosynchronous orbit (IGSO). However, the multi-orbit configuration brings great challenges for orbit determination. When orbit maneuvering, the orbital elements of the maneuvered satellites from broadcast ephemeris are unusable for several hours, which makes it difficult to estimate the initial orbit in the process of precise orbit determination. In addition, the maneuvered force information is unknown, which brings systematic orbit integral errors. In order to avoid these errors, observation data are removed from the iterative adjustment. For the above reasons, the precise orbit products of maneuvered satellites are missing from IGS (international GNSS (Global Navigation Satellite System) service) and iGMAS (international GNSS monitoring and assessment system). This study proposes a method to determine the precise orbits of maneuvered satellites for BeiDou GEO and IGSO. The initial orbits of maneuvered satellites could be backward forecasted according to the precise orbit products. The systematic errors caused by unmodeled maneuvered force are absorbed by estimated pseudo-stochastic pulses. The proposed method for determining the precise orbits of maneuvered satellites is validated by analyzing data of stations from the Multi-GNSS Experiment (MGEX). The results show that the precise orbits of maneuvered satellites can be estimated correctly when orbit maneuvering, which could supplement the precise products from the analysis centers of IGS and iGMAS. It can significantly improve the integrality and continuity of the precise products and subsequently provide better precise products for users.


2020 ◽  
Vol 12 (19) ◽  
pp. 3234
Author(s):  
Yun Qing ◽  
Jian Lin ◽  
Yang Liu ◽  
Xiaolei Dai ◽  
Yidong Lou ◽  
...  

The Global Navigation Satellite System (GNSS) occultation receiver onboard the China Seismo-Electromagnetic Satellite (CSES) can provide dual-frequency observations for both GPS and BDS-2 satellites. In this study, the data quality and orbit determination performance of the CSES are assessed. Severe data loss of about 30% is observed in GPS P2/L2 data, resulting in only 11% of epochs possessing six to eight useful GPS satellites. Due to fewer channels being allocated for BDS signals, less than 5% of epochs have more than three useful BDS satellites. Precise orbit determination (POD) of CSES is firstly carried out using GPS data. The results indicate that the orbit overlap differences improved from 3.65 cm to 2.8 cm in 3D root mean square (RMS) by antenna phase center correction. CSES orbits are then derived from the BDS only, and combined GPS and BDS data. BDS-based POD indicates that adding BDS geostationary Earth orbit (GEO) satellites could dramatically degrade the orbit accuracy. When excluding BDS GEO satellites, the orbit overlap differences of BDS-based and combined POD are 23.68 cm and 2.73 cm in 3D, respectively, while the differences compared with GPS-based POD are 14.83 cm and 1.05 cm, respectively. The results suggest that the obtained orbit can satisfy centimeter-level requirements. Given that large GPS tracking losses occurred and few channels are allocated for BDS signals, it is expected that POD performance can be further improved by increasing the number of dual-frequency observations.


2020 ◽  
Vol 12 (12) ◽  
pp. 2063 ◽  
Author(s):  
Lei Wang ◽  
Beizhen Xu ◽  
Wenju Fu ◽  
Ruizhi Chen ◽  
Tao Li ◽  
...  

Luojia-1A is a scientific experimental satellite operated by Wuhan University, which is the first low earth orbiter (LEO) navigation signal augmentation experimental satellite. The precise orbit is the prerequisite of augmenting existing Global Navigation Satellite System (GNSS) performance and improves users’ positioning accuracy. Meanwhile, LEO precise orbit determination (POD) with BeiDou-2 observations is particularly challenging since it only provides regional service. In this study, we investigated the method of precise orbit determination (POD) for Luojia-1A satellite with the onboard BeiDou observation to establish the high-precision spatial datum for the LEO navigation augmentation (LEO-NA) system. The multipath characteristic of the BeiDou System (BDS) observations from Luojia-1A satellite is analyzed, and the elevation-dependent BeiDou code bias is estimated with the LEO onboard observations. A weight reduction strategy is adopted to mitigate the negative effect of poor BeiDou-2 geostationary earth orbit (GEO) satellites orbit quality, and the Luojia-1A orbit precision can be improved from 6.3 cm to 2.3 cm with the GEO weighting strategy. The precision improvement of the radial direction, along-track, and out-of-plane directions are 53.47%, 47.29%, and 76.2%, respectively. Besides, tuning the pseudo-stochastic parameters is also beneficial for improving orbit precision. The experiment results indicate that about 2 cm overlapping orbit accuracy are achievable with BeiDou observations from Luojia-1A satellite if proper data processing strategies are applied.


2021 ◽  
Vol 13 (24) ◽  
pp. 5002
Author(s):  
Houzhe Zhang ◽  
Defeng Gu ◽  
Bing Ju ◽  
Kai Shao ◽  
Bin Yi ◽  
...  

The TH-2 satellite system, including the TH-2A and TH-2B, is the first distributed interferometric synthetic aperture radar (InSAR) satellite system in China. During the in-orbit operation, the TH-2A satellite should perform three maneuvers per day to keep the formation flying geometry. We estimate those maneuvers in the precise orbit determination (POD) by the GPS and BDS2 measurements on board, respectively. The residuals of the POD show that the effects caused by orbital maneuvers can be well eliminated for both the GPS and BDS2 data. The precision of the BDS2-based POD is better than 8.0 cm in the three-dimensional direction (3D) compared with the orbit derived from the GPS observations. Such a precision level of the satellite orbit satisfies the InSAR mission requirement of the TH-2. In addition, the relative error of velocity changes is employed to evaluate the maneuver estimations by the POD using the regional navigation system of BDS2. The results show that the relative error of velocity changes between the GPS- and BDS2-based POD is less than 7.0%, which indicates that the maneuver performance extracted from the regional BDS2 data is as good as that extracted from the global GPS data. In the GNSS fused processing, we found that the independent receiver clock offsets should be taken into account, since the time tag corrections for the GPS and BDS2 observations collected on the TH-2 spaceborne receivers were different. The precision of the GPS and BDS2 (GC) combined single point positioning (SPP) can be improved by 12–14% compared with the GPS-only solution when the position dilution of precision (PDOP) of GPS exceeds three. The overlap comparisons of the GC combined orbits show that the internal orbit precision of the TH-2 satellites is better than 0.7 cm. However, the improvement of the GC combined POD result is only 3–4% with respect to the GPS-only solution, which is limited to the precision of the precise orbit and clock products of BDS2 at the present stage.


2020 ◽  
Vol 12 (9) ◽  
pp. 1415 ◽  
Author(s):  
Xingxing Li ◽  
Yiting Zhu ◽  
Kai Zheng ◽  
Yongqiang Yuan ◽  
Gege Liu ◽  
...  

In recent years, the development of new constellations including Galileo, BeiDou Navigation Satellite System (BDS) and Quasi-Zenith Satellite System (QZSS) have undergone dramatic changes. Since January 2018, about 30 satellites of the new constellations have been launched and most of the new satellites have been included in the precise orbit and clock products provided by the Multi Global Navigation Satellite System (Multi-GNSS) Experiment (MGEX). Meanwhile, critical issues including antenna parameters, yaw-attitude models and solar radiation pressure models have been continuously refined for these new constellations and updated into precise MGEX orbit determination and precise clock estimation solutions. In this context, MGEX products since 2018 are herein assessed by orbit and clock comparisons among individual analysis centers (ACs), satellite laser ranging (SLR) validation and precise point positioning (PPP) solutions. Orbit comparisons showed 3D agreements of 3–5 cm for Galileo, 8–9 cm for BDS-2 inclined geosynchronous orbit (IGSO), 12–18 cm for BDS-2 medium earth orbit (MEO) satellites, 24 cm for BDS-3 MEO and 11–16 cm for QZSS IGSO satellites. SLR validations demonstrated an orbit accuracy of about 3–4 cm for Galileo and BDS-2 MEO, 5–6 cm for BDS-2 IGSO, 4–6 cm for BDS-3 MEO and 5–10 cm for QZSS IGSO satellites. Clock products from different ACs generally had a consistency of 0.1–0.3 ns for Galileo, 0.2–0.5 ns for BDS IGSO/MEO and 0.2–0.4 ns for QZSS satellites. The positioning errors of kinematic PPP in Galileo-only mode were about 17–19 mm in the north, 13–16 mm in the east and 74–81 mm in the up direction, respectively. As for BDS-only PPP, positioning accuracies of about 14, 14 and 49 mm could be achieved in kinematic mode with products from Wuhan University applied.


2021 ◽  
Vol 133 (4) ◽  
Author(s):  
K. Sośnica ◽  
G. Bury ◽  
R. Zajdel ◽  
K. Kazmierski ◽  
J. Ventura-Traveset ◽  
...  

AbstractThe first pair of satellites belonging to the European Global Navigation Satellite System (GNSS)—Galileo—has been accidentally launched into highly eccentric, instead of circular, orbits. The final height of these two satellites varies between 17,180 and 26,020 km, making these satellites very suitable for the verification of the effects emerging from general relativity. We employ the post-Newtonian parameterization (PPN) for describing the perturbations acting on Keplerian orbit parameters of artificial Earth satellites caused by the Schwarzschild, Lense–Thirring, and de Sitter general relativity effects. The values emerging from PPN numerical simulations are compared with the approximations based on the Gaussian perturbations for the temporal variations of the Keplerian elements of Galileo satellites in nominal, near-circular orbits, as well as in the highly elliptical orbits. We discuss what kinds of perturbations are detectable using the current accuracy of precise orbit determination of artificial Earth satellites, including the expected secular and periodic variations, as well as the constant offsets of Keplerian parameters. We found that not only secular but also periodic variations of orbit parameters caused by general relativity effects exceed the value of 1 cm within 24 h; thus, they should be fully detectable using the current GNSS precise orbit determination methods. Many of the 1-PPN effects are detectable using the Galileo satellite system, but the Lense–Thirring effect is not.


2021 ◽  
Vol 13 (16) ◽  
pp. 3189
Author(s):  
Min Li ◽  
Tianhe Xu ◽  
Haibo Ge ◽  
Meiqian Guan ◽  
Honglei Yang ◽  
...  

The precise orbit determination (POD) accuracy of the Chinese BeiDou Navigation Satellite System (BDS) is still not comparable to that of the Global Positioning System because of the unfavorable geometry of the BDS and the uneven distribution of BDS ground monitoring stations. Fortunately, low Earth orbit (LEO) satellites, serving as fast moving stations, can efficiently improve BDS geometry. Nearly all studies on Global Navigation Satellite System POD enhancement using large LEO constellations are based on simulations and their results are usually overly optimistic. The receivers mounted on a spacecraft or an LEO satellite are usually different from geodetic receivers and the observation conditions in space are more challenging than those on the ground. The noise level of spaceborne observations needs to be carefully calibrated. Moreover, spaceborne observational errors caused by space weather events, i.e., solar geomagnetic storms, are usually ignored. Accordingly, in this study, the actual spaceborne observation noises are first analyzed and then used in subsequent observation simulations. Then, the observation residuals from the actual-processed LEO POD during a solar storm on 8 September 2017 are extracted and added to the simulated spaceborne observations. The effect of the observational errors on the BDS POD augmented with different LEO constellation configurations is analyzed. The results indicate that the noise levels from the Swarm-A, GRACE-A, and Sentinel-3A satellites are different and that the carrier-phase measurement noise ranges from 2 mm to 6 mm. Such different noise levels for LEO spaceborne observations cause considerable differences in the BDS POD solutions. Experiments calculating the augmented BDS POD for different LEO constellations considering spaceborne observational errors extracted from the solar storm indicate that these errors have a significant influence on the accuracy of the BDS POD. The 3D root mean squares of the BDS GEO, IGSO, and MEO satellite orbits are 1.30 m, 1.16 m, and 1.02 m, respectively, with a Walker 2/1/0 LEO constellation, and increase to 1.57 m, 1.72 m, and 1.32 m, respectively, with a Walker 12/3/1 constellation. When the number of LEO satellites increases to 60, the precision of the BDS POD improves significantly to 0.89 m, 0.77 m, and 0.69 m for the GEO, IGSO, and MEO satellites, respectively. While 12 satellites are sufficient to enhance the BDS POD to the sub-decimeter level, up to 60 satellites can effectively reduce the influence of large spaceborne observational errors, i.e., from solar storms.


2019 ◽  
Vol 11 (7) ◽  
pp. 787 ◽  
Author(s):  
Jing Qiao ◽  
Wu Chen ◽  
Shengyue Ji ◽  
Duojie Weng

The geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites of the Beidou navigation satellite system are maneuvered frequently. The broadcast ephemeris can be interrupted for several hours after the maneuver. The orbit-only signal-in-space ranging errors (SISREs) of broadcast ephemerides available after the interruption are over two times larger than the errors during normal periods. To shorten the interruption period and improve the ephemeris accuracy, we propose a two-step orbit recovery strategy based on a piecewise linear thrust model. The turning points of the thrust model are firstly determined by comparison of the kinematic orbit with an integrated orbit free from maneuver; afterward, precise orbit determination (POD) is conducted for the maneuvered satellite by estimating satellite orbital and thrust parameters simultaneously. The observations from the IGS Multi-Global Navigation Satellite System (GNSS) Experiment (MGEX) network and ultra-rapid products of the German Research Center for Geosciences (GFZ) are used for orbit determination of maneuvered satellites from Sep to Nov 2017. The results show that for the rapidly recovered ephemerides, the average orbit-only SISREs are 1.15 and 1.0 m 1 h after maneuvering for GEO and IGSO respectively, which is comparable to the accuracy of Beidou broadcast ephemerides in normal cases.


Sign in / Sign up

Export Citation Format

Share Document