The fundamental role of environmental isotopes in the characterization of landfill impact on groundwater

Author(s):  
Elisabetta Preziosi ◽  
Eleonora Frollini ◽  
Daniele Parrone ◽  
Pasquale Manara ◽  
Stefano Ghergo

<p>Modern urban landfills are useful instruments for the safe disposal of everyday waste, especially when associated to a correct separate waste collection and circular economy best practices. Nevertheless, environmental pollution in the surrounding of the disposal area is always a major threat. The leachate and gas produced during the waste maturation must be carefully collected and conveyed to appropriate treatments or uses e.g. for energy production, in order to avoid harmful pollutants from migrating to groundwater or other natural matrices.</p><p>Appropriate monitoring practices are required to intervene promptly at the first sign of inefficiency of the protective barriers or leachate and gas collection systems. As regards groundwater, the monitoring network must include at least 3 observation points. The parameters to be analyzed, required by the legislation, aim at detecting the passage of specific contaminants or indicators of pollution, including inorganic elements and organic contaminants.</p><p>Very often, reducing conditions are observed in the groundwater underlying landfills, which trigger the reductive dissolution of iron and manganese (hydro)oxides. Reasons for this include: natural conditions of the aquifer, leachate pollution, the interaction of groundwater with landfill gas migrating from the plant.</p><p>Groundwater monitoring campaigns have been conducted for several years for the characterization of landfill impact on groundwater in central Italy and several case studies have been analyzed. Natural background levels have been applied, when possible, to distinguish the presence in groundwater of metals due to natural conditions from exceedances related to anthropogenic impact. Traditional groundwater monitoring has been complemented with the analysis of environmental isotopes including tritium and 13-carbon . Tritium is an excellent tracer of landfill pollution because its concentration is particularly high in both leachate and landfill gas.</p><p>The aim of this communication is to present some successful examples of isotope application to resolve doubts about the origin of high levels of inorganic compounds in groundwater, as well as traces of organic compounds, which are of concern as a possible sign of failure of the protective barriers of the plant.</p><p>In particular, we compare the results of the monitoring activities at two landfills, one currently active and one that has been operating in the past and is now completely dismissed. Field parameters (T, EC, pH, DO, ORP) were measured with probes in a flow-through cell. Ammonia, nitrite, sulfur and cyanide were measured in the field (UV-VIS). Quality control includes blind samples, field blanks and equipment blanks. Lab analysis were performed for major and trace elements, environmental isotopes (δ<sup>18</sup>O, δ<sup>2</sup>H, Tritium, δ<sup>13</sup>C), DOC, VOC with standard procedures.</p><p>The hydrochemical, hydrogeological and isotope data indicate a slow and modest groundwater contamination that is taking place in the old plant. The traces of organic compounds observed there were ascribed to the leachate, which is still produced and collected, which possibly infiltrates the groundwater. In the active plant no indication of pollution was found and some anomalous data regarding sulfur and chloride were provisionally ascribed to a geogenic origin.</p>

Author(s):  
Suman Sasmita Dash ◽  
Jyotsna Gawai ◽  
Rishi Dewangan ◽  
Sudhanshu Singh

Bioremediation of hydrocarbon contaminated soil is inexpensive and involves complete mineralization of organic contaminants to simple organic compounds, carbon dioxide, water and other inorganic compounds by the action of biological agents, according to their metabolic capacities.


1987 ◽  
Vol 16 (4) ◽  
pp. 341-348 ◽  
Author(s):  
L. M. Dudley ◽  
B. L. McNeal ◽  
J. E. Baham ◽  
C. S. Coray ◽  
H. H. Cheng

Author(s):  
Mario Vincenzo Russo ◽  
Ivan Notardonato ◽  
Alberto Rosada ◽  
Giuseppe Ianiri ◽  
Pasquale Avino

This paper shows a characterization of the organic and inorganic fraction of river waters (Tiber and Marta) and ores/soil samples collected in the Northern Latium region of Italy for evaluating the anthropogenic/natural source contribution to the environmental pollution of this area. For organic compounds, organochloride volatile compounds in Tiber and Marta rivers were analyzed by two different clean-up methods (i.e., liquid–liquid extraction and static headspace) followed by gas chromatography–electron capture detector (GC-ECD) analysis. The results show very high concentrations of bromoform (up to 1.82 and 3.2 µg L−1 in Tiber and Marta rivers, respectively), due to the presence of greenhouse crops, and of chloroform and tetrachloroethene, due to the presence of handicrafts installations. For the qualitative and quantitative assessment of the inorganic fraction, it is highlighted the use of a nuclear analytical method, instrumental neutron activation analysis, which allows having more information as possible from the sample without performing any chemical-physical pretreatment. The results have evidenced high levels of mercury (mean value 88.6 µg g−1), antimony (77.7 µg g−1), strontium (12,039 µg g−1) and zinc (103 µg g−1), whereas rare earth elements show levels similar to the literature data. Particular consideration is drawn for arsenic (414 µg g−1): the levels found in this paper (ranging between 1 and 5100 µg g−1) explain the high content of such element (as arsenates) in the aquifer, a big issue in this area.


2005 ◽  
Vol 39 (6) ◽  
pp. 1103-1112 ◽  
Author(s):  
Ki-Hyun Kim ◽  
YJ Choi ◽  
EC Jeon ◽  
Young Sunwoo

2011 ◽  
Vol 45 (34) ◽  
pp. 6191-6196 ◽  
Author(s):  
Yu Huang ◽  
Steven Sai Hang Ho ◽  
Kin Fai Ho ◽  
Shun Cheng Lee ◽  
Yuan Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document