Linking the dynamic expansion and contraction of stream networks to changes in water storage and water quality in a pre-Alpine catchment

Author(s):  
Izabela Bujak ◽  
Andrea Rinaldo ◽  
Ilja van Meerveld ◽  
Florian Käslin ◽  
Jana von Freyberg

<p>Many headwater catchments are characterized by temporary streams that flow only seasonally or during rainfall events. As a result, the network of flowing streams is a dynamic system that periodically expands and contracts. This dynamic is likely to affect water flow and composition: the expansion of the stream network enhances the hydrologic connectivity of hillslopes to the streams, which facilitates shorter transit times. Also, the onset of flow in previously dry streambeds can cause flushing of sediments and nutrients. However, our knowledge of the relationships between flowing stream network dynamics and water quantity and quality in headwater catchments is still limited because experimental data remain sparse.</p><p>Within the TempAqua project we investigate the processes that drive stream network dynamics by relating measurements of stream network geometry to changes in catchment water storage and stream water quality. For this, we monitored the flow state, discharge, groundwater levels, soil moisture, and precipitation in three (3-7 ha) headwater catchments in the northern Swiss pre-Alps (Alptal catchment) in summer and fall 2020 using a wireless sensor network. To obtain high-resolution data of the dynamic stream network, we did multiple mapping surveys using a self-developed mobile phone application. Moreover, we sampled streamwater and precipitation at an hourly resolution during rainfall events at multiple locations to quantify the short-term changes in water quality when the stream network expands. We will present our research activities in the Alptal catchment and discuss the initial results obtained from the combined monitoring of the flowing stream network and hydrometric and hydrochemical variables.</p>

2020 ◽  
Vol 34 (10) ◽  
pp. 2154-2175
Author(s):  
Jason A. Leach ◽  
James M. Buttle ◽  
Kara L. Webster ◽  
Paul W. Hazlett ◽  
Dean S. Jeffries

2016 ◽  
Vol 20 (2) ◽  
pp. 843-857 ◽  
Author(s):  
Tobias Schuetz ◽  
Chantal Gascuel-Odoux ◽  
Patrick Durand ◽  
Markus Weiler

Abstract. Several controls are known to affect water quality of stream networks during flow recession periods, such as solute leaching processes, surface water–groundwater interactions as well as biogeochemical in-stream turnover processes. Throughout the stream network, combinations of specific water and solute export rates and local in-stream conditions overlay the biogeochemical signals from upstream sections. Therefore, upstream sections can be considered functional units which could be distinguished and ordered regarding their relative contribution to nutrient dynamics at the catchment outlet. Based on snapshot sampling of flow and nitrate concentrations along the stream in an agricultural headwater during the summer flow recession period, we determined spatial and temporal patterns of water quality for the whole stream. A data-driven, in-stream-mixing-and-removal model was developed and applied for analysing the spatio-temporal in-stream retention processes and their effect on the spatio-temporal fluxes of nitrate from subcatchments. Thereby, we have been able to distinguish quantitatively between nitrate sinks, sources per stream reaches, and subcatchments, and thus we could disentangle the overlay of nitrate sink and source signals. For nitrate sources, we determined their permanent and temporal impact on stream water quality and for nitrate sinks, we found increasing nitrate removal efficiencies from upstream to downstream. Our results highlight the importance of distinct nitrate source locations within the watershed for in-stream concentrations and in-stream removal processes, respectively. Thus, our findings contribute to the development of a more dynamic perception of water quality in streams and rivers concerning ecological and sustainable water resource management.


2015 ◽  
Vol 12 (8) ◽  
pp. 8577-8614 ◽  
Author(s):  
T. Schuetz ◽  
C. Gascuel-Odoux ◽  
P. Durand ◽  
M. Weiler

Abstract. Several controls are known to affect water quality of stream networks during flow recession periods such as solute leaching processes, surface water – groundwater interactions as well as biogeochemical in-stream retention processes. Throughout the stream network combinations of specific water and solute export rates and local in-stream conditions overlay the biogeochemical signals from upstream sections. Therefore, upstream sections can be considered as functional units which could be distinguished and ordered regarding their relative contribution to nutrient dynamics at the catchment outlet. Based on synoptic sampling of flow and nitrate concentrations along the stream in an agricultural headwater during the summer flow recession period, we determined spatial and temporal patterns of water quality for the whole stream. A data-driven, in-stream-mixing-and-removal model was developed and applied for analyzing the spatio-temporal in-stream retention processes and their effect on the spatio-temporal fluxes of nitrates from sub-catchments. Thereby, we have been able to distinguish between nitrate sinks and sources per stream reaches and sub-catchments. For nitrate sources we have determined their permanent and temporally impact on stream water quality and for nitrate sinks we have found increasing nitrate removal efficiencies from up- to downstream. Our results highlight the importance of distinct nitrate source locations within the watershed for in-stream concentrations and in-stream removal processes, respectively. Thus, our findings contribute to the development of a more dynamic perception of water quality in streams and rivers concerning ecological and sustainable water resources management.


Data Series ◽  
10.3133/ds37 ◽  
1996 ◽  
Author(s):  
Richard B. Alexander ◽  
J.R. Slack ◽  
A.S. Ludtke ◽  
K.K. Fitzgerald ◽  
T.L. Schertz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document