The Impact of Land Cover Data on Rainfall-Runoff Prediction Using an Entity-Aware-LSTM

Author(s):  
Sebastian Drost ◽  
Fabian Netzel ◽  
Andreas Wytzisk-Ahrens ◽  
Christoph Mudersbach

<p>The application of Deep Learning methods for modelling rainfall-runoff have reached great advances in the last years. Especially, long short-term memory (LSTM) networks have gained enhanced attention for time-series prediction. The architecture of this special kind of recurrent neural network is optimized for learning long-term dependencies from large time-series datasets. Thus, different studies proved the applicability of LSTM networks for rainfall-runoff predictions and showed, that they are capable of outperforming other types of neural networks (Hu et al., 2018).</p><p>Understanding the impact of land-cover changes on rainfall-runoff dynamics is an important task. Such a hydrological modelling problem typically is solved with process-based models by varying model-parameters related to land-cover-incidents at different points in time. Kratzert et al. (2019) proposed an adaption of the standard LSTM architecture, called Entity-Aware-LSTM (EA-LSTM), which can take static catchment attributes as input features to overcome the regional modelling problem and provides a promising approach for similar use cases. Hence, our contribution aims to analyse the suitability of EA-LSTM for assessing the effect of land-cover changes.</p><p>In different experimental setups, we train standard LSTM and EA-LSTM networks for multiple small subbasins, that are associated to the Wupper region in Germany. Gridded daily precipitation data from the REGNIE dataset (Rauthe et al., 2013), provided by the German Weather Service (DWD), is used as model input to predict the daily discharge for each subbasin. For training the EA-LSTM we use land cover information from the European CORINE Land Cover (CLC) inventory as static input features. The CLC inventory includes Europe-wide timeseries of land cover in 44 classes as well as land cover changes for different time periods (Büttner, 2014). The percentage proportion of each land cover class within a subbasin serves as static input features. To evaluate the impact of land cover data on rainfall-runoff prediction, we compare the results of the EA-LSTM with those of the standard LSTM considering different statistical measures as well as the Nash–Sutcliffe efficiency (NSE).</p><p>In addition, we test the ability of the EA-LSTM to outperform physical process-based models. For this purpose, we utilize existing and calibrated hydrological models within the Wupper basin to simulate discharge for each subbasin. Finally, performance metrics of the calibrated model are used as benchmarks for assessing the performance of the EA-LSTM model.</p><p><strong>References</strong></p><p>Büttner, G. (2014). CORINE Land Cover and Land Cover Change Products. In: Manakos & M. Braun (Hrsg.), Land Use and Land Cover Mapping in Europe (Bd. 18, S. 55–74). Springer Netherlands. https://doi.org/10.1007/978-94-007-7969-3_5</p><p>Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water, 10(11), 1543. https://doi.org/10.3390/w10111543</p><p>Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., & Nearing, G. (2019). Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrology and Earth System Sciences, 23(12), 5089–5110. https://doi.org/10.5194/hess-23-5089-2019</p><p>Rauthe, M, Steiner, H, Riediger, U, Mazurkiewicz, A &Gratzki, A (2013): A Central European precipitation climatology – Part I: Generation and validation of a high-resolution gridded daily data set (HYRAS), Meteorologische Zeitschrift, Vol 22, No 3, 235–256. https://doi.org/10.1127/0941-2948/2013/0436</p>

2014 ◽  
Vol 33 (1) ◽  
pp. 5-22 ◽  
Author(s):  
Piotr Dzieszko

Abstract Last decades of research have revealed the environmental impacts of Land-Use/Cover Change (LUCC) throughout the globe. Human activities’ impact is becoming more and more pronounced on the natural environment. The key activity in the LUCC projects has been to simulate the syntheses of knowledge of LUCC processes, and in particular to advance understanding of the causes of land-cover change. Still, there is a need of developing case studies regional models to understand LUCC change patterns. The aim of this work is to reveal and describe the main changes in LUCC patterns occurring in Poznań Lakeland Mesoregion according to CORINE Land Cover database. Change analysis was the basis for the identification of the main drivers in land cover changes in the study area. The dominant transitions that can be grouped and modelled separately were identified. Each submodel was combined with all submodels in the final change prediction process. Driver variables were used to model the historical change process. Transitions were modelled using multi-layer perceptron (MLP) method. Using the historical rates of change and the transition potential model scenario for year 2006 was predicted. Corine Land Cover 2006 database was used for model validation.


2020 ◽  
Vol 12 (13) ◽  
pp. 2075 ◽  
Author(s):  
Adrian Ursu ◽  
Cristian Constantin Stoleriu ◽  
Constantin Ion ◽  
Vasile Jitariu ◽  
Andrei Enea

The present paper aims to evaluate if the Natura 2000 sites in Romania are placed over dynamic areas from a land cover changes perspective, or if they are placed in areas with low human interest and what the impact of these changes are. The effectiveness of conservation measures was addressed by analyzing the number of land cover changes and their areas in Natura 2000 sites, before and after declaring them as protected areas. Corine Land Cover (CLC) data were used as a tool to identify threats and pressures from each Natura 2000 site, and also assess whether land cover changes are more frequent in sites with a high biodiversity index, compared to those with low diversity, in order to estimate the conservation status. Changes in the land cover during 1990–2018 are characterized by three types of events, from 1990 to 2000 with most changes recorded, followed by a relative period of stability from 2000 to 2012; the most dynamic period is from 2012 to 2018. The main changes are due to deforestation. Only 29.7% ROSCI (Romanian Sites of Community Importance) and 36.5% ROSPA (Romanian Special Protected Areas) sites are characterized by a good degree of conservation without or with low modifications regarding the land cover. The most frequent threats and pressures that were found through CLC changes in the ROSCIs in Romania are related to forestry, grazing, the extent of the urbanized environment and those related to agriculture. The correspondence between Corine Land Cover and Natura 2000 specific threats and pressures emphasizes new guidelines for the Corine Land Cover program; therefore, this correspondence can be a potential tool to get more information for Natura 2000 sites.


2020 ◽  
Vol 60 (2) ◽  
pp. 71-89
Author(s):  
Michaela Žoncová

As a country with abundant natural resources, Slovakia has legislation to protect significant parts of nature and landscape. The paper aimed to identify the extent and nature of land cover changes in large protected areas in Slovakia and to determine how had these changes impacted the diversity and ecological stability of the landscape. We used the CORINE Land Cover data from 1990 and 2018 to identify landscape changes and analyzed them spatially and statistically. Overall, 21.7% of the total area was changed. In terms of landscape changes, nine dominant sub-processes within five »land cover flows« were identified. In terms of changes in landscape diversity and stability the most significant changes occurred in the NP Nízke Tatry.


2021 ◽  
Author(s):  
Teresa Alejandra Palacios Cabrera ◽  
Javier Valdés Abellán ◽  
Antonio Jódar Abellán ◽  
Rafael Alulema

<p>ABSTRACT</p><p>The study analyzes the changes in the rainfall-runoff process as a result of land cover changes occurred between 1990-2018 in the Guadalest Reservoir basin with an area of 122.5 km<sup>2</sup>, using the model of the HEC-HMS model at daily scale and  to capture the complex hydrological dynamics based on GIS information . The purpose is to analyze the spatial-temporal evolution of the hydrological response in 12 sub-basins and the dynamics of land use/land cover changes for the years 1990, 2000, 2006, 2012 and 2018. </p><p>The findings reveal a change in the type of sclerophyll vegetation (forests of Quercus (calliprinos, ilex, rotundifolia, suber, etc.)from 81.56% in the 1990 initial  stage, to natural grasslands by 81.55% in the 2018 stage; a decrease in agricultural areas and their conversion into coniferous forests and natural grasslands by approximately 60% in the same period; if exists an increase of coniferous forest to the detriment of the agriculture, implies that the evapotranspiration  will increase and the run-off will decrease   with an increase in runoff in principle but as time goes by it decreases bringing as a consequence a deficit in water supply. The results of land use  change detection between the years 1990-2018 were corroborated with the values of the curve numbers obtained.</p><p>The cyclical and trend analysis of the historical series of precipitation allows evidencing a five-year cycle and a decreasing trend from 1984 to 2018.</p><p>The HEC-HMS model implementation at a daily scale and GIS-based tools have proven to be useful in achieving the study objectives. Within the HEC-HMS, the SCS Curve Number model and the Muskingum method were suitable for solving the rainfall-runoff conversion and flood propagation equations, respectively.</p><p>The researching work debeloped  is intended to identify the impact derived by the anthropic action in the change of land use and Its vegetable coverage, and how this may impact on the evotranspiration, surface run-off, and the post hydropical drainage of The Guadalest Reservoir which will use for the Integral Management of the Basin. These findings provide to the water management planners very useful information about the effects of flash floods, which have human lives cost in the ravine basin studied in recent years.</p><p> </p><h3>KEYWORDS</h3><p>Land use change, evapotranspiration, runoff, HEC-HMS hydrological model, basin, Mediterranean</p>


2021 ◽  
Vol 13 (8) ◽  
pp. 4418
Author(s):  
Miraj Ahmed Bhuiyan ◽  
Jaehyung An ◽  
Alexey Mikhaylov ◽  
Nikita Moiseev ◽  
Mir Sayed Shah Danish

The main goal of this study is to evaluate the impact of restrictive measures introduced in connection with COVID-19 on consumption in renewable energy markets. The study will be based on the hypothesis that similar changes in human behavior can be expected in the future with the further spread of COVID-19 and/or the introduction of additional quarantine measures around the world. The analysis also yielded additional results. The strongest reductions in energy generation occurred in countries with a high percentage (more than 80%) of urban population (Brazil, USA, the United Kingdom and Germany). This study uses two models created with the Keras Long Short-Term Memory (Keras LSTM) Model, and 76 and 10 parameters are involved. This article suggests that various restrictive strategies reduced the sustainable demand for renewable energy and led to a drop in economic growth, slowing the growth of COVID-19 infections in 2020. It is unknown to what extent the observed slowdown in the spread from March 2020 to September 2020 due to the policy’s impact and not the interaction between the virus and the external environment. All renewable energy producers decreased the volume of renewable energy market supply in 2020 (except China).


Sign in / Sign up

Export Citation Format

Share Document