Can trait-based approaches model the resilience of soil microbial communities?

Author(s):  
Lindsay Todman ◽  
Andrew Neal

<p>Soil microbial communities (microbiomes) are dynamic, responding continually to their surrounding environment.  These dynamics may relate to changes in the taxonomic/phylogenetic community structure as well as the functional capacity of the entire microbiome. This dynamism makes it challenging to define resilience for such ecosystems. Here, resilient communities are those able to adjust their taxonomic composition under environmental pulse or press stresses to maintain or restore a particular function.  Trait-based models typically assume trade-offs between life cycle strategies because of the resources required to enable different behaviours. An individual trait may be advantageous depending on the environmental conditions at a particular time and location. However, recent experiments addressing resilience in which soils were repeatedly exposed to stress cycles show soils developed the ability to maintain function despite a repeatedly imposed pulse stress. This suggests that a stress tolerance strategy operates in conjunction with other life cycle strategies. Here, we consider conceptual approaches to reconcile these findings – such as the inclusion of additional life strategies to represent further dimensions of soil community function and a community level trait-based approach that represents the dynamics of functional change in trait space. We also consider the challenge, pertinent to resilience modelling, of distinguishing between stress tolerance and the exposure to stress in heterogeneous soil; both aspects will affect the soil microbial community response, yet the latter could erroneously affect stress tolerance parameters in a trait-based model.</p>

2012 ◽  
Vol 78 (24) ◽  
pp. 8587-8594 ◽  
Author(s):  
Melissa A. Cregger ◽  
Christopher W. Schadt ◽  
Nate G. McDowell ◽  
William T. Pockman ◽  
Aimée T. Classen

ABSTRACTMicrobial communities regulate many belowground carbon cycling processes; thus, the impact of climate change on the structure and function of soil microbial communities could, in turn, impact the release or storage of carbon in soils. Here we used a large-scale precipitation manipulation (+18%, −50%, or ambient) in a piñon-juniper woodland (Pinus edulis-Juniperus monosperma) to investigate how changes in precipitation amounts altered soil microbial communities as well as what role seasonal variation in rainfall and plant composition played in the microbial community response. Seasonal variability in precipitation had a larger role in determining the composition of soil microbial communities in 2008 than the direct effect of the experimental precipitation treatments. Bacterial and fungal communities in the dry, relatively moisture-limited premonsoon season were compositionally distinct from communities in the monsoon season, when soil moisture levels and periodicity varied more widely across treatments. Fungal abundance in the drought plots during the dry premonsoon season was particularly low and was 4.7 times greater upon soil wet-up in the monsoon season, suggesting that soil fungi were water limited in the driest plots, which may result in a decrease in fungal degradation of carbon substrates. Additionally, we found that both bacterial and fungal communities beneath piñon pine and juniper were distinct, suggesting that microbial functions beneath these trees are different. We conclude that predicting the response of microbial communities to climate change is highly dependent on seasonal dynamics, background climatic variability, and the composition of the associated aboveground community.


2021 ◽  
Vol 97 (4) ◽  
Author(s):  
Lucas Dantas Lopes ◽  
Jingjie Hao ◽  
Daniel P Schachtman

ABSTRACT Soil pH is a major factor shaping bulk soil microbial communities. However, it is unclear whether the belowground microbial habitats shaped by plants (e.g. rhizosphere and root endosphere) are also affected by soil pH. We investigated this question by comparing the microbial communities associated with plants growing in neutral and strongly alkaline soils in the Sandhills, which is the largest sand dune complex in the northern hemisphere. Bulk soil, rhizosphere and root endosphere DNA were extracted from multiple plant species and analyzed using 16S rRNA amplicon sequencing. Results showed that rhizosphere, root endosphere and bulk soil microbiomes were different in the contrasting soil pH ranges. The strongest impact of plant species on the belowground microbiomes was in alkaline soils, suggesting a greater selective effect under alkali stress. Evaluation of soil chemical components showed that in addition to soil pH, cation exchange capacity also had a strong impact on shaping bulk soil microbial communities. This study extends our knowledge regarding the importance of pH to microbial ecology showing that root endosphere and rhizosphere microbial communities were also influenced by this soil component, and highlights the important role that plants play particularly in shaping the belowground microbiomes in alkaline soils.


2021 ◽  
Vol 773 ◽  
pp. 145640
Author(s):  
Lili Rong ◽  
Longfei Zhao ◽  
Leicheng Zhao ◽  
Zhipeng Cheng ◽  
Yiming Yao ◽  
...  

Ecosystems ◽  
2021 ◽  
Author(s):  
Susana Rodríguez-Echeverría ◽  
Manuel Delgado-Baquerizo ◽  
José A. Morillo ◽  
Aurora Gaxiola ◽  
Marlene Manzano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document