Comparison of Microporous Minerals for Potential Contaminant Uptake

Author(s):  
Marvin Osorio ◽  
Christopher Oze ◽  
Aaron Celestian

<p>Microporous minerals have many industrial applications, from filtration to contaminant immobilization. Natural and synthetic minerals, including zeolites, clays, and silica aerogel, represent a few examples of microporous minerals with distinctive structures, surface charges, and porosity. Analysis and comparison of their crystal structures are necessary to determine how each mineral may be suited for contaminant uptake. Here we assessed the structure of microporous minerals, specifically rowleyite, clinoptilolite, vermiculite, and silica aerogel.  Raman spectroscopy, X-ray fluorescence, and X-ray powder diffraction were used to create and model atomic mineral structures to visualize atomic and macroscope features. Taking into account pore size and surface charge each mineral was reviewed to find the best fit with regards to heavy metal uptake, mainly Pb (lead). Overall, we provide a comparative framework to assess microporous minerals that will inform future flow-through experiments for heavy metal uptake.</p>

Toxics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 102
Author(s):  
Fayuan Wang ◽  
Shuqi Zhang ◽  
Peng Cheng ◽  
Shuwu Zhang ◽  
Yuhuan Sun

Soil amendments have been proposed for immobilizing metallic contaminants, thus reducing their uptake by plants. For the safe production of crops in contaminated soil, there is a need to select suitable amendments that can mitigate heavy metal uptake and enhance crop yield. The present experiment compared the effects of three amendments, hydroxyapatite (HAP), organic manure (OM), and biochar (BC), on plant growth and heavy metal accumulation by maize in an acidic soil contaminated with Cd, Pb, and Zn, and their potential for safe crop production. Toxicity characteristic leaching procedure (TCLP) tests, energy dispersive X-ray spectroscopy (EDS) analysis, and X-ray diffraction (XRD) analysis were used to evaluate the effectiveness and mechanisms of heavy metal immobilization by the amendments. The results showed that shoot and root biomass was significantly increased by HAP and 1% OM, with an order of 1% HAP > 0.1% HAP > 1% OM, but not changed by 0.1% OM and BC (0.1% and 1%). HAP significantly decreased Cd, Pb, and Zn concentrations in both shoots and roots, and the effects were more pronounced at the higher doses. OM decreased the shoot Cd and Pb concentrations and root Zn concentrations, but only 1% OM decreased the shoot Zn and root Pb concentrations. BC decreased the shoot Cd and Pb concentrations, but decreased the shoot Zn and root Pb concentrations only at 1%. HAP decreased the translocation factors (TFs) of Cd, Pb, and Zn (except at the 0.1% dose). OM and BC decreased the TFs of Cd and Zn, respectively, at the 1% dose but showed no significant effects in other cases. Overall, plant P, K, Fe, and Cu nutrition was improved by HAP and 1% OM, but not by 0.1 OM and BC. Soil pH was significantly increased by HAP, 1% OM, and 1% BC, following an order of 1% HAP > 1% OM > 0.1% HAP > 1% BC. The TCLP levels for Cd, Pb, and Zn were significantly reduced by HAP, which can be partly attributed to its liming effects and the formation of sparingly soluble Cd-, Pb-, and Zn-P-containing minerals in the HAP-amended soils. To some extent, all the amendments positively influenced plant and soil traits, but HAP was the optimal one for stabilizing heavy metals, reducing heavy metal uptake, and promoting plant growth in the contaminated soil, suggesting its potential for safe crop production.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 267-272 ◽  
Author(s):  
Ken Fukushi ◽  
Duk Chang ◽  
Sam Ghosh

The objective of this research was to investigate the feasibility of developing improved activated sludge cultures capable of removing heavy metals. Cystine, peptone, and β-glycerophosphate (BGP) stimulated metal uptake without the significant reduction of culture viability otherwise experienced in the absence of these chemicals. The cystine-peptone-BGP-grown culture exhibited the highest removal of copper and cadmium of 5.67 and 2.53 mM/g protein, respectively.


1999 ◽  
Vol 7 (1) ◽  
pp. 81-90 ◽  
Author(s):  
G. Vallini ◽  
F. Vaccari ◽  
A. Pera ◽  
M. Agnolucci ◽  
S. Scatena ◽  
...  

2003 ◽  
Vol 33 (4) ◽  
pp. 877-894
Author(s):  
El- Sebaie O ◽  
Abd El-Monem M ◽  
Ahmed M ◽  
Ahmed A

2017 ◽  
Vol 228 (9) ◽  
Author(s):  
Dorota Adamczyk-Szabela ◽  
Zdzisława Romanowska-Duda ◽  
Katarzyna Lisowska ◽  
Wojciech M. Wolf

Sign in / Sign up

Export Citation Format

Share Document