Non stationary combination for the simulation of time-varying flow rates in closed-loop ground heat exchangers

Author(s):  
Gabrielle Beaudry ◽  
Philippe Pasquier ◽  
Denis Marcotte

<p>Ground source heat pump systems are among the most energy-efficient heating and cooling technologies. Their performance is strongly related to the accuracy of the ground heat exchanger sizing, hence requiring the forecast of the system’s temperature evolution in response to the anticipated thermal loads. Through this process, simulation techniques that make use of the superposition principle are commonly used to reduce the computational burden. In their current state, these techniques are however only suitable for addressing linear and stationary problems and do not apply to fundamental non stationary situations related to ground source heat pumps operation that involve time-variant parameters.</p><p>The present work addresses this issue by introducing a novel method based on the principle of superposition that tackles the fast evaluation of the temperature of a closed-loop ground heat exchanger operating with a dynamic heat load as well as time-variant circulation flow rates. The developed method relies on the non stationary combination, a technique borrowed from the field of seismic data processing. This technique achieves discontinuous transitions of convolution products that can be smoothened near transition times by realizing a linear interpolation over the duration of the fluid residence time.</p><p>The accuracy and efficiency of the proposed method are verified by comparing its results with those provided by reference 3D finite-elements models developed in the Comsol Multiphysics environment. For this purpose, comparative simulations<strong> </strong>representing the non stationary operation of a closed-loop system having time-variant circulation flow rates are conducted. The case of a single well is first investigated, followed by a borefield of eight wells to demonstrate the validity of the method in both scenarios.</p><p>Findings indicate that the proposed method can reproduce the reference results with a mean absolute error that is lower than 0.02 °C, and that it is faster than the numerical models by several orders of magnitude. These findings suggest that a broader range of operating scenarios can be handled by highly efficient simulation tools based on the superposition principle, which could foster the development of optimal operating strategies and lead to enhanced overall performances of ground source heat pump systems.</p>

2013 ◽  
Vol 724-725 ◽  
pp. 909-915
Author(s):  
Ping Fang Hu ◽  
Zhong Yi Yu ◽  
Fei Lei ◽  
Na Zhu ◽  
Qi Ming Sun ◽  
...  

A vertical U-tube ground heat exchanger can be utilized to exchange heat with the soil in ground source heat pump systems. The outlet temperature of the working fluid through the U-tube not only accounts for heat transfer capacity of a ground heat exchanger, but also greatly affects the operational efficiency of heat pump units, which is an important characteristic parameter of heat transfer process. It is quantified by defining a thermal effectiveness coefficient. The performance evaluation is performed with a three dimensional numerical model using a finite volume technique. A dynamic simulation was conducted to analyze the thermal effectiveness as a function of soil thermal properties, backfill material properties, separation distance between the two tube legs, borehole depth and flow velocity of the working fluid. The influence of important characteristic parameters on the heat transfer performance of vertical U-tube ground heat exchangers is investigated, which may provide the references for the design of ground source heat pump systems in practice.


2014 ◽  
Vol 945-949 ◽  
pp. 2820-2824 ◽  
Author(s):  
Li Bai ◽  
Peng Xuan Wang

For the case of ground-source heat pump in severe cold regions in winter, the heat transfer situation of the ground and ground heat exchanger was dynamically simulated according to the statistics of a project in Changchun to analysis the change of the ground heat, which provided references for the initial design and operation and management of the ground-coupled heat pump in severe cold regions.


2013 ◽  
Vol 700 ◽  
pp. 231-234
Author(s):  
Lian Yang ◽  
Yong Hong Huang ◽  
Liu Zhang

There are many ground source heat pumps in engineering construction application. However, Research on heat exchanger models of single-hole buried vertical ground source heat pump mostly focuses on single U-tube ground heat exchangers other than double U-tube ones in China currently. Compared with single U-tubes, double U-tubes have the heat transfer particularity of asymmetry. Therefore, the use of the traditional single tube models would have large error in the simulation of the actual double U-tube heat exchangers. This paper frames a three-dimensional heat transfer model for the vertical single-hole buried double u-tube heat exchanger in a ground source heat pump system. The model considers the performance of U-bube material and uses a dual coordinate system and makes the control elemental volumes superimposed.


2019 ◽  
Vol 11 (11) ◽  
pp. 363-378
Author(s):  
Arif Widiatmojo ◽  
Shrestha Gaurav ◽  
Takeshi Ishihara ◽  
Akira Tomigashi ◽  
Kasumi Yasukawa ◽  
...  

2014 ◽  
Vol 529 ◽  
pp. 625-629
Author(s):  
Chao Yi Tan ◽  
Peng Fei Yang ◽  
Meng Meng Wang ◽  
Hai Hua Hu ◽  
Guo Qiang Zhang

In order to improve EER of the ground source heat pump system and reduce heat transfer area of the ground heat exchanger, the authors had developed a series connection ground source heat pump water chiller-heater unit, after theoretical analyses, proved that placing the water chilled in front of the hot water unit could acquire a higher EER comparing to the opposite. In the meantime, this unit had a higher EER than a common water chiller-heater unit or a water chiller-heater unit with condensing heat recovery device. In an air conditioning system of ground source heat pump, employing the above mentioned unit can also reduce heat transfer area of the ground heat exchanger. It suggested that series connection ground source heat pump water chiller-heater unit is a kind of technology with a great development potential.


Proceedings ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 24
Author(s):  
Piotr Rynkowski

In this paper, experimental studies were performed for a solar ground source heat pump system (SGSHPS) with a vertical ground heat exchanger (VGHE). The experiment was operated during the summer in 2018. The heat from the solar collector was monitored by measuring the inlet and outlet temperatures and flow rate of the heat transfer fluids. An energy equilibrium balance carried out indicates heat extraction from the solar collector to the ground heat exchanger. It has been established that clear impact is achieved within a radius of 5 m. The average temperature of the actively regenerated borehole was higher than that of the undisturbed profile, which has a direct impact on the significant benefits of the coefficient of performance (COP) of the ground source heat pump system (GSHPS) and effectively helps soil regeneration. The average efficiency ratio of the heat transferred from solar radiation to soil in the SGSHPS was 42.3%.


Sign in / Sign up

Export Citation Format

Share Document