The electrodynamic influence of thermospheric winds in the daytime ionosphere.

Author(s):  
Thomas Immel ◽  
Brian Harding ◽  
Roderick Heelis ◽  
Astrid Maute ◽  
Jeffrey Forbes ◽  
...  

<p>The electrodynamic influence of thermospheric winds is an effect thought to dominate the development of<span> </span>the daytime low-latitude ionosphere, through the generation of dynamo currents and associated vertical plasma drifts. Until recently, observations of the thermospheric and ionopsheric state variables have mainly been defined and compared on climatological time scales, due to their collection from separate observatories with disparate measurement capabilities.<span>  </span>These datasets are inadequate for investigation of the actual action of thermospheric drivers as they modify the ionospheric state, as the response clearly changes on 24-hour timescales, and shorter when viewed in the a constant-local-time frame<span> </span>of reference. New observatiions of thermospheric winds, uninterrupted over the 90-300 km altitude range, are now provided by the Ionospheric Connection Explorer along with simultaneous plasma velocity and density measurments. These observations are directly comparable to the wind measurements in crossings of the magnetic equator, where the winds are magnetically conjugate to the drift measurements. Investigation of the noon-sector drifts vs wind drivers is presented. We find that the local driver is clearly evident in the noon-time vertical plasma drifts under all conditions.</p><p> </p>

2007 ◽  
Vol 25 (11) ◽  
pp. 2371-2392 ◽  
Author(s):  
J. A. Bittencourt ◽  
V. G. Pillat ◽  
P. R. Fagundes ◽  
Y. Sahai ◽  
A. A. Pimenta

Abstract. A realistic fully time-dependent computer model, denominated LION (Low-latitude Ionospheric) model, that simulates the dynamic behavior of the low-latitude ionosphere is presented. The time evolution and spatial distribution of the ionospheric particle densities and velocities are computed by numerically solving the time-dependent, coupled, nonlinear system of continuity and momentum equations for the ions O+, O2+, NO+, N2+ and N+, taking into account photoionization of the atmospheric species by the solar extreme ultraviolet radiation, chemical and ionic production and loss reactions, and plasma transport processes, including the ionospheric effects of thermospheric neutral winds, plasma diffusion and electromagnetic E×B plasma drifts. The Earth's magnetic field is represented by a tilted centered magnetic dipole. This set of coupled nonlinear equations is solved along a given magnetic field line in a Lagrangian frame of reference moving vertically, in the magnetic meridian plane, with the electromagnetic E×B plasma drift velocity. The spatial and time distribution of the thermospheric neutral wind velocities and the pattern of the electromagnetic drifts are taken as known quantities, given through specified analytical or empirical models. The model simulation results are presented in the form of computer-generated color maps and reproduce the typical ionization distribution and time evolution normally observed in the low-latitude ionosphere, including details of the equatorial Appleton anomaly dynamics. The specific effects on the ionosphere due to changes in the thermospheric neutral winds and the electromagnetic plasma drifts can be investigated using different wind and drift models, including the important longitudinal effects associated with magnetic declination dependence and latitudinal separation between geographic and geomagnetic equators. The model runs in a normal personal computer (PC) and generates color maps illustrating the typical behavior of the low-latitude ionosphere for a given longitudinal region, for different seasons, geophysical conditions and solar activity, at each instant of time, showing the time evolution of the low-latitude ionosphere, between about 20° north and south of the magnetic equator. This paper presents a detailed description of the mathematical model and illustrative computer results.


1988 ◽  
Author(s):  
Wayne I. Klemetti ◽  
Paul A. Kossey ◽  
John E. Rasmussen ◽  
Maria Sueli Da Silveira Macedo Moura

2018 ◽  
Vol 36 (3) ◽  
pp. 809-823 ◽  
Author(s):  
Navin Parihar ◽  
Sandro Maria Radicella ◽  
Bruno Nava ◽  
Yenca Olivia Migoya-Orue ◽  
Prabhakar Tiwari ◽  
...  

Abstract. Simultaneous observations of OI 777.4 and OI 630.0 nm nightglow emissions were carried at a low-latitude station, Allahabad (25.5° N, 81.9° E; geomag. lat.  ∼  16.30° N), located near the crest of the Appleton anomaly in India during September–December 2009. This report attempts to study the F region of ionosphere using airglow-derived parameters. Using an empirical approach put forward by Makela et al. (2001), firstly, we propose a novel technique to calibrate OI 777.4 and 630.0 nm emission intensities using Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa Satellite Mission 3 (COSMIC/FORMOSAT-3) electron density profiles. Next, the electron density maximum (Nm) and its height (hmF2) of the F layer have been derived from the information of two calibrated intensities. Nocturnal variation of Nm showed the signatures of the retreat of the equatorial ionization anomaly (EIA) and the midnight temperature maximum (MTM) phenomenon that are usually observed in the equatorial and low-latitude ionosphere. Signatures of gravity waves with time periods in the range of 0.7–3.0 h were also seen in Nm and hmF2 variations. Sample Nm and hmF2 maps have also been generated to show the usefulness of this technique in studying ionospheric processes.


2016 ◽  
Vol 121 (4) ◽  
pp. 3421-3438 ◽  
Author(s):  
B. Nava ◽  
J. Rodríguez‐Zuluaga ◽  
K. Alazo‐Cuartas ◽  
A. Kashcheyev ◽  
Y. Migoya‐Orué ◽  
...  

1999 ◽  
Vol 104 (A8) ◽  
pp. 17091-17106 ◽  
Author(s):  
M. A. Biondi ◽  
S. Y. Sazykin ◽  
B. G. Fejer ◽  
J. W. Meriwether ◽  
C. G. Fesen

Sign in / Sign up

Export Citation Format

Share Document