Soil erosion and its prevention measures during the construction period of underground engineering: a case study in the city Shanghai, China

Author(s):  
Hongliang Tang

<p><strong>Abstract: </strong>As a huge metropolis, the highly intensive development and utilization of underground space in Shanghai has become the distinct trend of urban construction. Combined research among more than 100 industrial and civil construction projects in the city finds that soil erosion during the construction of underground works accounts for a significant proportion (50%~60%) of the totality of soil erosion or degradation. In order to further promote the precise management and control of water and soil conservation in the procedure of construction engineering projects, this paper analyzes the relationship between foundation pit supporting measures and water and soil conservation results in typical underground engineering examples. Through summing up the high frequency risk points of water and soil loss caused by underground engineering of housing construction projects in Shanghai, several positive methods for preventing and controlling water and soil erosion could be contributed correspondingly for the future work, such as pretreatment of the drilling caving of bored piles, and making full use of the soil produced by underground excavation.</p><p><strong>Key words: </strong>underground engineering; risk analysis; water and soil conservation measures</p>

2021 ◽  
Vol 233 ◽  
pp. 01034
Author(s):  
YANG Chunxia ◽  
CHEN Xiaofeng ◽  
LI Li ◽  
Chen Xi ◽  
HU Jia ◽  
...  

The disturbance characteristics of power transmission line projects are long distance, scattered disturbances, large differences in natural conditions, and diverse types and strengths of soil erosion. These two points are the key to soil and water conservation, Including that identifying the main controlling factors of soil erosion in each construction disturbance area, and adapting measures to local conditions, and setting up water and soil conservation measures for disasters are power transmission lines in hilly areas. This paper took a specific project as an example, analyzed and evaluated the characteristics of water and soil erosion in the project and optimizes the configuration of measures, in order to provide a reference for the arrangement of water and soil conservation measures in the construction of similar projects.


2009 ◽  
Vol 4 (No. 2) ◽  
pp. 57-65 ◽  
Author(s):  
M. Dumbrovský ◽  
S. Korsuň

The objective of this contribution is to provide information on a generally applicable optimisation procedure intended for designing a system of terraces and retention reservoirs within integrated territory protection from the harmful effects of soil erosion. The formulated procedure is a universal tool which can be used for any territory. An optimisation mathematical model was used to find the most suitable combination of various elaborated pre-optimisation variants of the soil conservation and flood prevention measures under the given conditions of each particular habitat. This model was created on the basis of a mixed discrete programming. The model compilation and its analysis on a high performance computer was performed using the model and calculation system GAMS. The model solution was controlled by one or more simultaneously operating optimisation criteria. A system of terraces as an important part of the soil erosion and flood control was chosen to verify the possibilities of the described optimisation procedure utilisation. The system was proposed within the land consolidation in the case study areas of Hustopeče and Starovice cadastral areas. First, the model function and performance were verified. Then the possibilities of experimentation on the model of the solved system of complex conservation measures were tested. The main results of the real and some experimental solutions are summarised. The results of practical applications of the integrated territory protection model validate its functionality and universal applicability.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 614
Author(s):  
Muhammad Faisal ◽  
Zening Wu ◽  
Huiliang Wang ◽  
Zafar Hussain ◽  
Chenyang Shen

Heavy metals in road dust pose a significant threat to human health. This study investigated the concentrations, patterns, and sources of eight hazardous heavy metals (Cr, Ni, Cu, Zn, As, Cd, Pb, and Hg) in the street dust of Zhengzhou city of PR China. Fifty-eight samples of road dust were analyzed based on three methods of risk assessment, i.e., Geo-Accumulation Index (Igeo), Potential Ecological Risk Assessment (RI), and Nemerow Synthetic Pollution Index (PIN). The results exhibited higher concentrations of Hg and Cd 14 and 7 times higher than their background values, respectively. Igeo showed the risks of contamination in a range of unpolluted (Cr, Ni) to strongly polluted (Hg and Cd) categories. RI came up with the contamination ranges from low (Cr, Ni, Cu, Zn, As, and Pb) to extreme (Cd and Hg) risk of contamination. The risk of contamination based on PIN was from safe (Cu, As, and Pb) to seriously high (Cd and Hg). The results yielded by PIN indicated the extreme risk of Cd and Hg in the city. Positive Matrix Factorization was used to identify the sources of contamination. Factor 1 (vehicular exhaust), Factor 2 (coal combustion), Factor 3 (metal industry), and Factor 4 (anthropogenic activities), respectively, contributed 14.63%, 35.34%, 36.14%, and 13.87% of total heavy metal pollution. Metal’s presence in the dust is a direct health risk for humans and warrants immediate and effective pollution control and prevention measures in the city.


1999 ◽  
Vol 39 (12) ◽  
pp. 41-45 ◽  
Author(s):  
A. I. Fraser ◽  
T. R. Harrod ◽  
P. M. Haygarth

Soil erosion, in the form of transported suspended sediment in overland flow, is often associated with high rates of particulate phosphorus (PP) (total P>0.45 μm) transfer from land to watercourses. Particulate P may provide a long-term source of P for aquatic biota. Twenty-two sites for winter overland flow monitoring were selected in south-west England within fields ranging from 0.2–3.8 ha on conventionally-managed arable land. Fields were situated on highly porous, light textured soils, lacking impermeable horizons and often overlying major aquifers. Long arable use and modern cultivation methods result in these soils capping under rain impact. Overland flow was observed when rainfall intensity approached the modest rate of 0.8 mm hr−1 on land at or near to field capacity. Low intensity rainfall (<2 mm hr−1) produced mean suspended sediment losses of 14 kg ha−1 hr−1, with associated PP transfer rates of 16 g ha−1 hr−1. In high intensity rainfall (>9 mm hr−1) mean PP losses of 319 g ha−1 hr−1 leaving the field were observed. As might be expected, there was a good relationship between PP and suspended sediment transfer in overland flow leaving the sites. The capacity of light soils to cap when in arable use, combined with heavy or prolonged rainfall, resulted in substantial discharges, soil erosion and associated PP transfer. Storms with heavy rain, typically of only a few hours duration, were characterised by considerable losses of PP. Such events, with return periods of once or twice a winter, may account for a significant proportion of total annual P transfer from agricultural soils under arable crops. However, contributions from less intense rain with much longer duration (around 100 hours per winter in many arable districts of the UK) are also demonstrated here.


Author(s):  
Leonid Anatolievich Denisov ◽  
Mikhail Sergeevich Pakhomov

The article is devoted to a historical event that occurred 250 years ago in Moscow. The authors draw analogies between the plague epidemic and the current situation associated with a new coronavirus infection, and note what unites these events. It shows the dedicated work of doctors in the conditions of complete ambiguity of the causes and spread of these infections, in the absence of effective treatment methods, what was the behavior of the population, how prevention measures were developed, and what is the role of the authorities of Moscow and St. Petersburg in the fight. How the state of medical science and the level of health care, referred to by economists as the non — material sphere, can affect the physical and mental health of the population and the economic situation of the city, country and the whole World.


Sign in / Sign up

Export Citation Format

Share Document