Comparison among Gravimetric, Astrogravimetric and Astrogeodetic Geoids: Case Study for Austria

Author(s):  
Hussein Abd-Elmotaal ◽  
Norbert Kühtreiber

<p>It is used to state that all geoid determination techniques should yield to the same geoid if the indirect effect is properly taken into account (Heiskanen and Moritz, 1967). The current study compares different geoid determination techniques for Austria. The used techniques are the gravimetric, astrogravimetric and astrogeodetic geoid determination techniques. The available data sets (gravity, deflections of the vertical, height, GPS) are described. The window remove-restore technique (Abd-Elmotaal and Kuehtreiber, 2003) has been used. The available gravity anomalies and the deflections of the vertical have been topographically-isostatically reduced using the Airy isostatic hypothesis. The reduced deflections have been used to interpolate deflections on a relatively dense grid covering the data window. These gridded reduced deflections have been used to compute an astrogeodetic geoid for Austria using least-squares collocation technique within the remove-restore scheme. The Vening Meinesz formula has been used to compute an astrogravimetric geoid for Austria. Another gravimetric geoid for Austria has been determined in the framework of the window remove-restore technique using Stokes integral with modified Stokes kernel. All computed geoids have been validated using GNSS/levelling derived geoid. A wide comparison among the derived geoids computed within the current investigation has been carried out.</p>

2015 ◽  
Vol 9 (2) ◽  
Author(s):  
Zahra Ismail ◽  
Olivier Jamet

AbstractGeoid determinations by the Remove-Compute-­Restore (R-C-R) technique involves the application of Stokes’ integral on reduced gravity anomalies. Numerical Stokes’ integration produces an error depending on the choice of the integration radius, grid resolution and Stokes’ kernel function.In this work, we aim to evaluate the accuracy of Stokes’ integral through a study on synthetic gravitational signals derived from EGM2008 on three different landscape areas with respect to the size of the integration domain and the resolution of the anomaly grid. The influence of the integration radius was studied earlier by several authors. Using real data, they found that the choice of relatively small radii (less than 1°) enables to reach an optimal accuracy. We observe a general behaviour coherent with these earlier studies. On the other hand, we notice that increasing the integration radius up to 2° or 2.5° might bring significantly better results. We note that, unlike the smallest radius corresponding to a local minimum of the error curve, the optimal radius in the range 0° to 6° depends on the terrain characteristics. We also find that the high frequencies, from degree 600, improve continuously with the integration radius in both semi-­mountainous and mountain areas.Finally, we note that the relative error of the computed geoid heights depends weakly on the anomaly spherical harmonic degree in the range from degree 200 to 2000. It remains greater than 10 % for any integration radii up to 6°. This result tends to prove that a one centimetre accuracy cannot be reached in semi-mountainous and mountainous regions with the unmodified Stokes’ kernel.


2021 ◽  
Vol 11 (1) ◽  
pp. 29-37
Author(s):  
Adili Abulaitijiang ◽  
Ole Baltazar Andersen ◽  
Riccardo Barzaghi ◽  
Per Knudsen

Abstract The coastal marine gravity field is not well modelled due to poor data coverage. Recent satellite altimeters provide reliable altimetry observations near the coast, filling the gaps between the open ocean and land. We show the potential of recent satellite altimetry for the coastal marine gravity modelling using the least squares collocation technique. Gravity prediction error near the coast is better than 4 mGal. The modelled gravity anomalies are validated with sparse shipborne gravimetric measurements. We obtained 4.86 mGal precision when using the altimetry data with the best coastal coverage and retracked with narrow primary peak retracker. The predicted gravity field is an enhancement to EGM2008 over the coastal regions. The potential improvement in alti- metric marine gravity will be beneficial for the next generation of EGM development.


Author(s):  
Harrison Togia ◽  
Oceana P. Francis ◽  
Karl Kim ◽  
Guohui Zhang

Hazards to roadways and travelers can be drastically different because hazards are largely dependent on the regional environment and climate. This paper describes the development of a qualitative method for assessing infrastructure importance and hazard exposure for rural highway segments in Hawai‘i under different conditions. Multiple indicators of roadway importance are considered, including traffic volume, population served, accessibility, connectivity, reliability, land use, and roadway connection to critical infrastructures, such as hospitals and police stations. The method of evaluating roadway hazards and importance can be tailored to fit different regional hazard scenarios. It assimilates data from diverse sources to estimate risks of disruption. A case study for Highway HI83 in Hawai‘i, which is exposed to multiple hazards, is conducted. Weakening of the road by coastal erosion, inundation from sea level rise, and rockfall hazards require adaptation solutions. By analyzing the risk of disruption to highway segments, adaptation approaches can be prioritized. Using readily available geographic information system data sets for the exposure and impacts of potential hazards, this method could be adapted not only for emergency management but also for planning, design, and engineering of resilient highways.


Forecasting ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 322-338
Author(s):  
Marvin Carl May ◽  
Alexander Albers ◽  
Marc David Fischer ◽  
Florian Mayerhofer ◽  
Louis Schäfer ◽  
...  

Currently, manufacturing is characterized by increasing complexity both on the technical and organizational levels. Thus, more complex and intelligent production control methods are developed in order to remain competitive and achieve operational excellence. Operations management described early on the influence among target metrics, such as queuing times, queue length, and production speed. However, accurate predictions of queue lengths have long been overlooked as a means to better understanding manufacturing systems. In order to provide queue length forecasts, this paper introduced a methodology to identify queue lengths in retrospect based on transitional data, as well as a comparison of easy-to-deploy machine learning-based queue forecasting models. Forecasting, based on static data sets, as well as time series models can be shown to be successfully applied in an exemplary semiconductor case study. The main findings concluded that accurate queue length prediction, even with minimal available data, is feasible by applying a variety of techniques, which can enable further research and predictions.


2016 ◽  
Vol 41 (4) ◽  
pp. 357-388 ◽  
Author(s):  
Elizabeth A. Stuart ◽  
Anna Rhodes

Background: Given increasing concerns about the relevance of research to policy and practice, there is growing interest in assessing and enhancing the external validity of randomized trials: determining how useful a given randomized trial is for informing a policy question for a specific target population. Objectives: This article highlights recent advances in assessing and enhancing external validity, with a focus on the data needed to make ex post statistical adjustments to enhance the applicability of experimental findings to populations potentially different from their study sample. Research design: We use a case study to illustrate how to generalize treatment effect estimates from a randomized trial sample to a target population, in particular comparing the sample of children in a randomized trial of a supplemental program for Head Start centers (the Research-Based, Developmentally Informed study) to the national population of children eligible for Head Start, as represented in the Head Start Impact Study. Results: For this case study, common data elements between the trial sample and population were limited, making reliable generalization from the trial sample to the population challenging. Conclusions: To answer important questions about external validity, more publicly available data are needed. In addition, future studies should make an effort to collect measures similar to those in other data sets. Measure comparability between population data sets and randomized trials that use samples of convenience will greatly enhance the range of research and policy relevant questions that can be answered.


2017 ◽  
Vol 78 (5) ◽  
pp. 717-736 ◽  
Author(s):  
Samuel Green ◽  
Yanyun Yang

Bifactor models are commonly used to assess whether psychological and educational constructs underlie a set of measures. We consider empirical underidentification problems that are encountered when fitting particular types of bifactor models to certain types of data sets. The objective of the article was fourfold: (a) to allow readers to gain a better general understanding of issues surrounding empirical identification, (b) to offer insights into empirical underidentification with bifactor models, (c) to inform methodologists who explore bifactor models about empirical underidentification with these models, and (d) to propose strategies for structural equation model users to deal with underidentification problems that can emerge when applying bifactor models.


2001 ◽  
Vol 105 (1051) ◽  
pp. 501-516 ◽  
Author(s):  
A. P. Brown

Abstract For the purpose of the design and certification of inflight icing protection systems for transport and general aviation aircraft, the eventual re-definition/expansion of the icing environment of FAR 25/JAR 25, Appendix C is under consideration. Such a re-definition will be aided by gathering as much inflight icing event data as reasonably possible, from widely-different geographic locations. The results of a 12-month pilot programme of icing event data gathering are presented. Using non-instrumented turboprop aircraft flying upon mid-altitude routine air transport operations, the programme has gathered observational data from across the British Isles and central France. By observing a number of metrics, notably windscreen lower-corner ice impingement limits, against an opposing corner vortex-flow, supported by wing leading edge impingement limits, the observed icing events have been classified as ‘small’, ‘medium’ or ‘large’ droplet. Using the guidance of droplet trajectory modelling, MVD values for the three droplet size bins have been conjectured to be 15, 40 and 80mm. Hence, the ‘large’ droplet category would be in exceedance of FAR/JAR 25, Appendix C. Data sets of 117 winter-season and 55 summer-season icing events have been statistically analysed. As defined above, the data sets include 11 winter and five summer large droplet icing encounters. Icing events included ‘sandpaper’ icing from short-duration ‘large’ droplets, and a singular ridge formation icing event in ‘large’ droplet. The frequency of ‘large’ droplet icing events amounted to 1 in 20 flight hours in winter and 1 in 35 flight hours in summer. These figures reflect ‘large’ droplet icing encounter probabilities perhaps substantially greater than previously considered. The ‘large’ droplet events were quite localised, mean scale-size being about 6nm.


Sign in / Sign up

Export Citation Format

Share Document