scholarly journals Atmospheric gaseous hydrochloric and hydrobromic acid in urban Beijing, China: detection, source identification and potential atmospheric impacts

Author(s):  
Lei Yao ◽  
Xiaolong Fan ◽  
Jing Cai ◽  
Chao Yan ◽  
Biwu Chu ◽  
...  

<p>Gaseous hydrochloric (HCl) and hydrobromic acid (HBr) are vital halogen species that play essential roles in tropospheric physicochemical processes. Yet, majority of the current studies on these halogen species were conducted in marine or coastal areas. Detection and source identification of HCl and HBr in inland urban areas (especially megacities) remain scarce, thus, limiting the full understanding of halogen chemistry and potential atmospheric impacts in the environments with limited influence from the marine sources. Here, both gaseous HCl and HBr were concurrently measured by Chemical Ionization-Atmospheric Pressure interface-Long Time Of Flight-Mass Spectrometer (CI-APi-LTOF-MS) in urban Beijing, China at the BUCT station (39.94° N, 116.30° E) during winter and early spring of 2019. We observed significant HCl and HBr concentrations ranged from a minimum value at 1.3×10<sup>8</sup> cm<sup>-3</sup> and 4.3×10<sup>7</sup> cm<sup>-3 </sup>up to 5.9×10<sup>9</sup> cm<sup>-3</sup> and 1.2×10<sup>9</sup> cm<sup>-3</sup>, respectively. The HCl and HBr concentrations are enhanced along with the increase of atmospheric temperature, UVB, and levels of gaseous HNO<sub>3</sub>. Based on the air mass analysis and high correlations of HCl and HBr with the burning indicators (HCN and HCNO), the gaseous HCl and HBr are found to be related to anthropogenic burning aerosols. The gas-aerosol partitioning may also play a dominant role in the elevated daytime HCl and HBr. During the daytime, the reaction of HCl and HBr with OH radicals lead to significant production of atomic Cl and Br, up to 1.7×10<sup>4 </sup>cm<sup>-3 </sup>s<sup>-1</sup>and 7.9×10<sup>4 </sup>cm<sup>-3 </sup>s<sup>-1</sup>, respectively. The production rate of atomic Br (via HBr + OH) are 2-3 times higher than that of atomic Cl (via HCl + OH), highlighting the potential importance of bromine chemistry in the urban area. Furthermore, our observations of elevated HCl and HBr may suggest an important recycling pathway of halogen species in inland megacities, and may provide a plausible explanation for the widespread of halogen chemistry, which could affect the atmospheric oxidation in China.</p>

2021 ◽  
Vol 21 (14) ◽  
pp. 11437-11452
Author(s):  
Xiaolong Fan ◽  
Jing Cai ◽  
Chao Yan ◽  
Jian Zhao ◽  
Yishuo Guo ◽  
...  

Abstract. Gaseous hydrochloric (HCl) and hydrobromic acid (HBr) are vital halogen species that play essential roles in tropospheric physicochemical processes. Yet, the majority of the current studies on these halogen species were conducted in marine or coastal areas. Detection and source identification of HCl and HBr in inland urban areas remain scarce, thus limiting the full understanding of halogen chemistry and potential atmospheric impacts in the environments with limited influence from the marine sources. Here, both gaseous HCl and HBr were concurrently measured in urban Beijing, China, during winter and early spring of 2019. We observed significant HCl and HBr concentrations ranging from a minimum value at 1 × 108 molecules cm−3 (4 ppt) and 4 × 107 molecules cm−3 (1 ppt) up to 6 × 109 molecules cm−3 (222 ppt) and 1 × 109 molecules cm−3 (37 ppt), respectively. The HCl and HBr concentrations are enhanced along with the increase of atmospheric temperature, UVB and levels of gaseous HNO3. Based on the air mass analysis and high correlations of HCl and HBr with the burning indicators (HCN and HCNO), gaseous HCl and HBr are found to be related to anthropogenic burning aerosols. The gas–particle partitioning may also play a dominant role in the elevated daytime HCl and HBr. During the daytime, the reactions of HCl and HBr with OH radicals lead to significant production of atomic Cl and Br, up to 2 × 104 molecules cm−3 s−1 and 8 × 104 molecules cm−3 s−1, respectively. The production rate of atomic Br (via HBr + OH) is 2–3 times higher than that of atomic Cl (via HCl + OH), highlighting the potential importance of bromine chemistry in the urban area. On polluted days, the production rates of atomic Cl and Br are faster than those on clean days. Furthermore, our observations of elevated HCl and HBr may suggest an important recycling pathway of halogen species in inland megacities and may provide a plausible explanation for the widespread halogen chemistry, which could affect the atmospheric oxidation in China.


2020 ◽  
Author(s):  
Xiaolong Fan ◽  
Jing Cai ◽  
Chao Yan ◽  
Jian Zhao ◽  
Yishuo Guo ◽  
...  

Abstract. Gaseous hydrochloric (HCl) and hydrobromic acid (HBr) are vital halogen species that play essential roles in tropospheric physicochemical processes. Yet, majority of the current studies on these halogen species were conducted in marine or coastal areas. Detection and source identification of HCl and HBr in inland urban areas remain scarce, thus, limiting the full understanding of halogen chemistry and potential atmospheric impacts in the environments with limited influence from the marine sources. Here, both gaseous HCl and HBr were concurrently measured in urban Beijing, China during winter and early spring of 2019. We observed significant HCl and HBr concentrations ranged from a minimum value at 1.3 × 108 cm−3 and 4.3 × 107 cm−3 up to 5.9 × 109 cm−3 and 1.2 × 109 cm−3, respectively. The HCl and HBr concentrations are enhanced along with the increase of atmospheric temperature, UVB, and levels of gaseous HNO3. Based on the air mass analysis and high correlations of HCl and HBr with the burning indicators (HCN and HCNO), the gaseous HCl and HBr are found to be related to anthropogenic burning aerosols. The gas-aerosol partitioning may also play a dominant role in the elevated daytime HCl and HBr. During the daytime, the reaction of HCl and HBr with OH radicals lead to significant production of atomic Cl and Br, up to 1.7 × 104 cm−3 s−1 and 7.9 × 104 cm−3 s−1, respectively. The production rate of atomic Br (via HBr + OH) are 2–3 times higher than that of atomic Cl (via HCl + OH), highlighting the potential importance of bromine chemistry in the urban area. Furthermore, our observations of elevated HCl and HBr may suggest an important recycling pathway of halogen species in inland megacities, and may provide a plausible explanation for the widespread of halogen chemistry, which could affect the atmospheric oxidation in China.


2004 ◽  
Vol 4 (7) ◽  
pp. 1961-1987 ◽  
Author(s):  
K. Toyota ◽  
Y. Kanaya ◽  
M. Takahashi ◽  
H. Akimoto

Abstract. A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry) to investigate photochemical interactions between volatile organic compounds (VOCs) and reactive halogen species in the marine boundary layer (MBL). Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit description of oxidative degradation of up to C3-hydrocarbons (CH4, C2H6, C3H8, C2H4, C3H6, and C2H2) initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in forming halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO) and alkenes (especially C3H6) are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from a reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. The reaction between Br atoms and C2H2 is shown to be unimportant for determining the degree of bromine activation in the remote MBL. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl sulfide, NOx, and O3 in the MBL.


2003 ◽  
Vol 3 (5) ◽  
pp. 4549-4632 ◽  
Author(s):  
K. Toyota ◽  
Y. Kanaya ◽  
M. Takahashi ◽  
H. Akimoto

Abstract. A new chemical scheme is developed for the multiphase photochemical box model SEAMAC (size-SEgregated Aerosol model for Marine Air Chemistry) to investigate photochemical interactions between volatile organic compounds (VOCs) and reactive halogen species in the marine boundary layer (MBL). Based primarily on critically evaluated kinetic and photochemical rate parameters as well as a protocol for chemical mechanism development, the new scheme has achieved a near-explicit treatment of oxidative degradation of up to C3-hydrocarbons CH4, C2H6, C3H8, C2H4, C3H6, and C2H2) initiated by reactions with OH radicals, Cl- and Br-atoms, and O3. Rate constants and product yields for reactions involving halogen species are taken from the literature where available, but the majority of them need to be estimated. In particular, addition reactions of halogen atoms with alkenes will result in the formation of halogenated organic intermediates, whose photochemical loss rates are carefully evaluated in the present work. Model calculations with the new chemical scheme reveal that the oceanic emissions of acetaldehyde (CH3CHO) and alkenes (especially C3H6) are important factors for regulating reactive halogen chemistry in the MBL by promoting the conversion of Br atoms into HBr or more stable brominated intermediates in the organic form. The latter include brominated hydroperoxides, bromoacetaldehyde, and bromoacetone, which sequester bromine from reactive inorganic pool. The total mixing ratio of brominated organic species thus produced is likely to reach 10-20% or more of that of inorganic gaseous bromine species over wide regions over the ocean. On the other hand, the reaction between Br atoms and C2H2 is unimportant for determining the degree of bromine activation in the remote MBL. It is suggested that peroxyacetic acid formed via CH3CHO oxidation is one of the important chemical agents for triggering autocatalytic halogen release from sea-salt aerosols. These results imply that reactive halogen chemistry can mediate a link between the oceanic emissions of VOCs and the behaviors of compounds that are sensitive to halogen chemistry such as dimethyl sulfide, NOx, and O3 in the MBL.


2013 ◽  
Vol 8 (1) ◽  
pp. 084596 ◽  
Author(s):  
Zhongchang Sun ◽  
Xinwu Li ◽  
Wenxue Fu ◽  
Yingkui Li ◽  
Dongsheng Tang

2016 ◽  
Vol 144 (11) ◽  
pp. 2354-2362 ◽  
Author(s):  
F. C. JIANG ◽  
F. YANG ◽  
L. CHEN ◽  
J. JIA ◽  
Y. L. HAN ◽  
...  

SUMMARYHand, foot, and mouth disease (HFMD) has caused public health concerns worldwide. We aimed to investigate the effect of meteorological factors on the HFMD epidemic in Qingdao, a port city in China. A total of 78641 cases were reported in Qingdao between January 2007 and December 2014. Of those, 71084 (90·39%) occurred in children aged 0–5 years, with an incidence of 1691·2/100000. The incidence increased from early spring, peaked between spring and summer, and decreased in late summer. Aetiological agents in all severe cases and selected mild cases were characterized by examining throat swabs. Except for enterovirus 71 (EV71) and coxsackievirus A16 (CA16), other EVs caused >50% of the HFMD cases between 2011 and 2014. EV71 was more frequent in the off-peak months than in the peak months and prone to causing more severe cases compared to CA16 (χ2 = 46·3, P < 0·001). CA10 caused more severe HFMD than did CA6 (χ2 = 20·49, P < 0·001) and all non-CA10 EVs (χ2 = 41·01, P < 0·001). Community-derived HFMD cases accounted for 65·11%. Spearman rank correlation analysis showed that HFMD incidence in children aged 0–5 years was positively correlated with atmospheric temperature (rs = 0·77, P < 0·001), relative humidity (rs = 0·507, P < 0·001), and precipitation (rs = 0·328, P < 0·001). Climate changes and CA10 surveillance in communities should be integrated into the current prophylactic programme.


2017 ◽  
Vol 56 (8) ◽  
pp. 2221-2237 ◽  
Author(s):  
Ping Yang ◽  
Guoyu Ren ◽  
Wei Hou

AbstractHourly datasets obtained by automatic weather stations in Beijing, China, are developed and employed to analyze the spatial and temporal characteristics of relative humidity (RH) and urban dryness island intensity (UDII) over built-up areas. A total of 36 stations inside the sixth ring road are considered as urban sites, while six stations in suburban belts surrounding the built-up areas are taken as reference sites. Results show that the RH is obviously smaller in urban areas than in suburban areas, indicating the effect of urbanization on near-surface atmospheric moisture and RH. A further analysis of relations between RH and temperature on varied time scales shows that the variations in RH in the urban areas are not due solely to changes in temperature. The annual and seasonal mean UDII are high in central urban areas, with the strongest UDII values occurring in autumn and the weakest values occurring in spring. The diurnal UDII variations are characterized by a steadily strong UDII stage from 2000 to 0800 LT and a minimum at 1500 or 1600 LT. The rapid shifts of UDII from high (low) to low (high) occur during the periods 0800–1600 LT (1600–2000 LT). The occurrence time of the peaks varies among different seasons: the peaks appear at 0700, 2100, 2000, and 0800 LT for spring, summer, autumn, and winter, respectively. Further analysis shows that large UDII values appear in the evenings and early nights in late summer and early to midautumn and that low UDII values mainly occur in the afternoon hours of spring, winter, and late autumn.


2018 ◽  
Vol 10 (12) ◽  
pp. 2021 ◽  
Author(s):  
Xinpeng Tian ◽  
Qiang Liu ◽  
Xiuhong Li ◽  
Jing Wei

The operational Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol Products (APs) have provided long-term and wide-spatial-coverage aerosol optical properties across the globe, such as aerosol optical depth (AOD). However, the performance of the latest Collection 6.1 (C6.1) of MODIS APs is still unclear over urban areas that feature complex surface characteristics and aerosol models. The aim of this study was to validate and compare the performance of the MODIS C6.1 and C6 APs (MxD04, x = O for Terra, x = Y for Aqua) over Beijing, China. The results of the Dark Target (DT) and Deep Blue (DB) algorithms were validated against Aerosol Robotic Network (AERONET) ground-based observations at local sites. The retrieval uncertainties and accuracies were evaluated using the expected error (EE: ±0.05 + 15%) and the root-mean-square error (RMSE). It was found that the MODIS C6.1 DT products performed better than the C6 DT products, with a greater percentage (by about 13%–14%) of the retrievals falling within the EE. However, the DT retrievals collected from two collections were significantly overestimated in the Beijing region, with more than 64% and 48% of the samples falling above the EE for the Terra and Aqua satellites, respectively. The MODIS C6.1 DB products performed similarly to the C6 DB products, with 70%–73% of the retrievals matching within the EE and estimation uncertainties. Moreover, the DB algorithm performed much better than DT algorithm over urban areas, especially in winter where abundant missing pixels were found in DT products. To investigate the effects of factors on AOD retrievals, the variability in the assumed surface reflectance and the main optical properties applied in DT and DB algorithms are also analyzed.


Sign in / Sign up

Export Citation Format

Share Document