Using the concept of hydrological connectivity to integrate physical and social systems

Author(s):  
Louise Bracken ◽  
Jacky Croke

<p>The concept of connectivity has found great traction in understanding the movement of fluxes across the surface of the earth through disciplinary perspectives including hydrology, geomorphology and ecology (Bracken and Croke, 2007; Bracken et al 2013;2015). Connectivity-based approaches have also generated new understanding of structural-functional relationships that characterise complex systems, for instance in computational neuroscience, social network science and systems biology (Turnbull et al., 2018). Whilst the concept of hydrological connectivity has been used widely, at all scales and with respect to fluxes of both water and sediment, critique and development of the concept is less frequent in the literature. In this paper we revisit the existing body of work around hydrological connectivity to examine whether the concept has been used to it’s full potential and explore further ways in which the concept of hydrological connectivity could be expanded to continue to drive geomorphological research. One potential avenue for research is to learn from complex systems and use the concept of connectivity to embrace human dynamics (through managing the landscape and guiding policy and regulation) on one hand and climate change (which drives system inputs) on the other.  This opportunity is explored here using the water sector as a case study where planning, and managing for, water security under growing population pressures and future climate change are explored through this broader interpretation of connectivity. We see this wider coupling between humans and system inputs playing a significant role in shaping earth surface processes and sediment dynamics and a widening of definition may enable hydrologists and geomorphologists to better integrate socio-ecological systems into our research.</p>

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 219 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Rosa María Mateos ◽  
Pablo Ezquerro

In this work, we developed a new method to assess the impact of climate change (CC) scenarios on land subsidence related to groundwater level depletion in detrital aquifers. The main goal of this work was to propose a parsimonious approach that could be applied for any case study. We also evaluated the methodology in a case study, the Vega de Granada aquifer (southern Spain). Historical subsidence rates were estimated using remote sensing techniques (differential interferometric synthetic aperture radar, DInSAR). Local CC scenarios were generated by applying a bias correction approach. An equifeasible ensemble of the generated projections from different climatic models was also proposed. A simple water balance approach was applied to assess CC impacts on lumped global drawdowns due to future potential rainfall recharge and pumping. CC impacts were propagated to drawdowns within piezometers by applying the global delta change observed with the lumped assessment. Regression models were employed to estimate the impacts of these drawdowns in terms of land subsidence, as well as to analyze the influence of the fine-grained material in the aquifer. The results showed that a more linear behavior was observed for the cases with lower percentage of fine-grained material. The mean increase of the maximum subsidence rates in the considered wells for the future horizon (2016–2045) and the Representative Concentration Pathway (RCP) scenario 8.5 was 54%. The main advantage of the proposed method is its applicability in cases with limited information. It is also appropriate for the study of wide areas to identify potential hot spots where more exhaustive analyses should be performed. The method will allow sustainable adaptation strategies in vulnerable areas during drought-critical periods to be assessed.


2020 ◽  
Vol 28 ◽  
pp. 100222 ◽  
Author(s):  
K.M.J. Verbist ◽  
H. Maureira-Cortés ◽  
P. Rojas ◽  
S. Vicuña

2017 ◽  
Vol 19 (3) ◽  
pp. 163 ◽  
Author(s):  
Adjie Pamungkas ◽  
Sarah Bekessy ◽  
Ruth Lane

Reducing community vulnerability to flooding is increasingly important given predicted intensive flood events in many parts of the world. We built a community vulnerability model to explore the effectiveness of a range of proactive and reactive adaptations to reduce community vulnerability to flood. The model consists of floods, victims, housings, responses, savings, expenditure and income sub models. We explore the robustness of adaptations under current conditions and under a range of future climate change scenarios. We present results of this model for a case study of Centini Village in Lamongan Municipality, Indonesia, which is highly vulnerable to the impacts of annual small-scale and infrequent extreme floods.  We compare 11 proactive adaptations using indicators of victims, damage/losses and recovery process to reflect the level of vulnerability. We find that reforestation and flood infrastructure redevelopment are the most effective proactive adaptations for minimising vulnerability to flood under current condition. Under climate change scenario, the floods are predicted to increase 17% on the average and 5% on the maximum measurements. The increasing floods result reforestation is the only effective adaptations in the future under climate change scenario.


2007 ◽  
Vol 87 (S1) ◽  
pp. 109-122 ◽  
Author(s):  
D. R. Purkey ◽  
B. Joyce ◽  
S. Vicuna ◽  
M. W. Hanemann ◽  
L. L. Dale ◽  
...  

2019 ◽  
Vol 6 ◽  
pp. 100025 ◽  
Author(s):  
Tsuyoshi Kinouchi ◽  
Takashi Nakajima ◽  
Javier Mendoza ◽  
Pablo Fuchs ◽  
Yoshihiro Asaoka

Sign in / Sign up

Export Citation Format

Share Document