ASIM TGFs associated with high peak current strokes

Author(s):  
Andrey Mezentsev ◽  
Nikolai Østgaard ◽  
Torsten Neubert ◽  
Victor Reglero

<p>The Atmosphere-Space Interactions Monitor (ASIM) has been installed on board of the International Space Station in April 2018, successfully providing science data for 2.5 years. The Modular X- and Gamma-ray Sensor (MXGS) of ASIM is designed to detect Terrestrial Gamma-ray Flashes (TGFs) (short intense bursts of gamma-ray photons), produced during the initial breakdown phase of the +IC lightning discharges.</p><p> </p><p>In this contribution we report and summarize the results on the ASIM TFGs associated with high peak current lightning detections (detected by GLD and WWLLN networks). High peak current detections tend to be associated with short duration TGFs and do not exhibit a tendency to correlate with the fluence of the TGF.</p>

2014 ◽  
Vol 1 (1) ◽  
pp. 303-306
Author(s):  
Pere Blay ◽  
Lola Sabau-Graziati ◽  
Víctor Reglero ◽  
Paul H. Connell ◽  
Juana M. Rodrigo ◽  
...  

Atmosphere-Space Interactions Monitor (ASIM) mission is an ESA pay load which will be installed in the Columbus module of the International Space Station (ISS). ASIM is optimized to the observation and monitoring of luminescent phenomena in the upper atmosphere, the so called Transient Luminous Event (TLEs) and Terrestrial Gamma Ray Flashes(TGFs). Both TLEs and TGFs have been discovered recently (past two decades) and opened a new field of research in high energetic phenomena in the atmosphere. We will review the capabilities of ASIM and how it will help researchers to gain deeper knowledge of TGFs, TLEs, their inter-relationship and how they are linked to severe thunderstorms and the phenomena of lightning.


2021 ◽  
Author(s):  
Susan Kizer ◽  
David Flittner ◽  
Marilee Roell ◽  
Robert Damadeo ◽  
Carrie Roller ◽  
...  

<p>The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument installed on the International Space Station (ISS) has completed over three and a half years of data collection and production of science data products. The SAGE III/ISS is a solar and lunar occultation instrument that scans the light from the Sun and Moon through the limb of the Earth’s atmosphere to produce vertical profiles of aerosol, ozone, water vapor, and other trace gases. It continues the legacy of previous SAGE instruments dating back to the 1970s to provide data continuity of stratospheric constituents critical for assessing trends in the ozone layer. This presentation shows the validation results of comparing SAGE III/ISS ozone and water vapor vertical profiles from the newly released v5.2 science product with those of in situ and satellite data .</p>


Author(s):  
Y. Wada ◽  
T. Enoto ◽  
Y. Nakamura ◽  
T. Morimoto ◽  
M. Sato ◽  
...  

2013 ◽  
Vol 87 (10) ◽  
Author(s):  
C. R. A. Augusto ◽  
V. Kopenkin ◽  
C. E. Navia ◽  
M. de Oliveira ◽  
K. H. Tsui ◽  
...  

2019 ◽  
Vol 215 (2) ◽  
Author(s):  
Nikolai Østgaard ◽  
Jan E. Balling ◽  
Thomas Bjørnsen ◽  
Peter Brauer ◽  
Carl Budtz-Jørgensen ◽  
...  

2000 ◽  
Vol 25 (3-4) ◽  
pp. 901-904
Author(s):  
S.I. Svertilov ◽  
V.G. Stolpovskii ◽  
V.V. Bogomolov ◽  
M.I. Kudryavtsev ◽  
I.G. Mitrofanov ◽  
...  

2020 ◽  
Author(s):  
Andrey Mezentsev ◽  
Nikolai Østgaard ◽  
Martino Marisaldi ◽  
Pavlo Kochkin ◽  
Torsten Neubert ◽  
...  

<p>Launched and installed at the International Space Station in April 2018, the Atmosphere-Space Interactions Monitor (ASIM) provides science data since June 2018. Suite of onboard instruments contains optical and high energy detectors payloads. Modular Multi-spectral Imaging Array (MMIA) includes three photometers (180-240 nm, 337 nm and 777.4 nm) sampling at 100 kHz, and two cameras (337 nm and 777.4 nm) sampling at 12 Hz. It allows for lightning and transient luminous events (TLEs) observations during the orbital eclipses. The Modular X- and Gamma-ray Sensor (MXGS) detects X- and Gamma-ray photons, and is dedicated to detection of Terrestrial Gamma-ray Flashes (TGFs). The mutual relative timing accuracy between MXGS and MMIA is as good as +/- 5 µs.</p><p> </p><p>TGFs are known to be associated with the +IC lightning discharges. ASIM provides a unique possibility for simultaneous observations of TGFs together with the underlying optical activity inside the thundercloud. In this contribution we summarize the almost two years of ASIM observations to make an overview of the various optical contexts accompanying the TGF production.</p>


Sign in / Sign up

Export Citation Format

Share Document