Orogenic listening posts along the margins of western Tethys reveal a major tectonic event involving extreme extension at the start of the Eocene–Miocene transition

Author(s):  
Marnie Forster ◽  
Gordon Lister

<p>Orogenic listening posts have been established along the northern margins of western Tethys: i) in the west and central Alps; ii) in the Cyclades, Aegean Sea, Greece; and iii) along a traverse in the NW Himalaya. We report on modelling and simulation of data from the conjoint inversion of argon geochronology and ultra-high-vacuum (UHV) diffusion experiments, on rocks from these locations. In the Alps, samples come from either side of the Lepontine dome, a metamorphic core complex that resulted from orogen-parallel extension, with a major pulse of stretching coinciding with the onset of the Eocene–Oligocene transition. In the Cyclades, the samples come from Ios, a metamorphic core complex that began its existence at about the same time, related to extreme extension caused by southward rollback of the Hellenic slab, after an immediately preceding accretion event that incorporated Gondwanan slices into the terrane-stack. In the NW Himalaya, samples come from yet another Tethyan metamorphic core complex, the giant schist and gneiss dome that includes the Tso Morari, in Ladakh, India.<span> </span></p><p>Inversion of data from these locations reveals unprecedented detail in the inferred temperature-time curve, allowing recognition that a rapid cooling event took place in the lower plate of the detachment system at each of these locations, almost at the same time. We discuss the tectonic implications of a synchronised tectonic mode switch at the start of the Eocene–Oligocene transition. In each location there was a preceding period of compressional orogenesis, involving accretion of multiple tectonic slices to the terrane stack after an accretion event, followed by a period during which extreme extension of the continental lithosphere appears to have taken place. This supports our 2001 hypothesis that tectonic mode switches during collisional orogenesis are globally synchronized, in consequence of torque balance being continuously maintained in the planetary assemblages of moving lithospheric plates. Accretion events perturb that torque balance, with tectonic mode switches the result of mechanical adjustment caused by the creation of new subduction systems, with the initiation of rollback offering a potential explanation for the rapid exhumation of core complexes in the over-riding lithosphere.</p>

Solid Earth ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 2255-2275
Author(s):  
Sonia Yeung ◽  
Marnie Forster ◽  
Emmanuel Skourtsos ◽  
Gordon Lister

Abstract. The Late Cretaceous Asteroussia event as recorded in the Cyclades is a potential key to the tectonic evolution of Western Tethys. Microstructural analysis and 40Ar/39Ar geochronology on garnet–mica schists and the underlying granitoid basement terrane on the island of Ios demonstrates evidence of a Late Cretaceous high-pressure, medium-temperature (HP–MT) metamorphic event. This suggests that the Asteroussia crystalline nappe on Crete extended northward to include these Gondwanan tectonic slices. In this case, the northern part of the Asteroussia nappe (on Ios) is overlain by the terrane stack defined by the individual slices of the Cycladic Eclogite–Blueschist Unit, whereas in the south (in Crete) the Asteroussia slices are near the top of a nappe stack defined by the individual tectonic units of the external Hellenides. This geometry implies that accretion of the Ios basement terrane involved a significant leap of the subduction megathrust (250–300 km) southward. Accretion needs to have commenced at or about ∼38 Ma, when the already partially exhumed slices of the Cycladic Eclogite–Blueschist Unit began to thrust over the Ios basement. By ∼35–34 Ma, the subduction jump had been accomplished, and renewed rollback began the extreme extension that led to the exhumation of the Ios metamorphic core complex.


2020 ◽  
Author(s):  
Sonia Yeung ◽  
Marnie Forster ◽  
Emmanuel Skourtsos ◽  
Gordon Lister

Abstract. 40Ar/39Ar geochronology on garnet-mica schists and the underlying Gondwanan granitoid basement terrane on Ios demonstrates evidence of a Late Cretaceous high pressure, medium temperature (HP–MP) metamorphic event. This suggests that the Asteroussia crystalline nappe on Crete may extend northward and include Ios, in the Cyclades. If this is correct, the northern part of the Asteroussia nappe (on Ios) is overlain by the terrane stack defined by the individual slices of the Cycladic Eclogite-Blueschist Unit, whereas in the south (in Crete) the Asteroussia nappe is at the top of a nappe stack defined by the individual tectonic units of the external Hellenides. This geometry implies that the accretion of the Ios basement terrane involved a significant leap (250–300 km) southwards of the surface outcrop of the subduction megathrust. This accretion would have commenced at or about ~38 Ma, when the already exhumed terranes of the Cycladic Eclogite-Blueschist Unit had begun to thrust over the Ios basement. By ~35 Ma, we suggest the subduction jump had been accomplished, and renewed rollback began the extreme extension that led to the exhumation of the Ios metamorphic core complex.


2017 ◽  
Vol 34 (1) ◽  
pp. 45 ◽  
Author(s):  
Elizard González-Becuar ◽  
Efrén Pérez-Segura ◽  
Ricardo Vega-Granillo ◽  
Luigi Solari ◽  
Carlos Manuel González-León ◽  
...  

Plutonic rocks of the Puerta del Sol area, in central Sonora, represent the extension to the south of the El Jaralito batholith, and are part of the footwall of the Sierra Mazatán metamorphic core complex, whose low-angle detachment fault bounds the outcrops of plutonic rocks to the west. Plutons in the area record the magmatic evolution of the Laramide arc and the Oligo-Miocene syn-extensional plutonism in Sonora. The basement of the area is composed by the ca. 1.68 Ga El Palofierral orthogneiss that is part of the Caborca block. The Laramide plutons include the El Gato diorite (71.29 ± 0.45 Ma, U-Pb), the El Pajarito granite (67.9 ± 0.43 Ma, U-Pb), and the Puerta del Sol granodiorite (49.1 ± 0.46 Ma, U-Pb). The younger El Oquimonis granite (41.78 ± 0.32 Ma, U-Pb) is considered part of the scarce magmatism that in Sonora records a transition to the Sierra Madre Occidental magmatic event. The syn-extensional plutons are the El Garambullo gabbro (19.83 ± 0.18 Ma, U-Pb) and the Las Mayitas granodiorite (19.2 ± 1.2 Ma, K-Ar). A migmatitic event that affected the El Palofierral orthogneiss, El Gato diorite, and El Pajarito granite between ca. 68 and 59 Ma might be related to the emplacement of the El Pajarito granite. The plutons are metaluminous to slightly peraluminous, with the exception of El Oquimonis granite, which is a peraluminous two-mica, garnet-bearing granite. They are mostly high-K calc-alkaline with nearly uniform chondrite-normalized REE and primitive-mantle normalized multielemental patterns that are characteristic of continental margin arcs and resemble patterns reported for other Laramide granites of Sonora. The Laramide and syn-extensional plutons also have Sr, Nd and Pb isotopic ratios that plot within the fields reported for Laramide granites emplaced in the Caborca terrane in northwestern and central Sonora. Nevertheless, and despite their geochemical affinity to continental magmatic arcs, the El Garambullo gabbro and Las Mayitas granodiorite are syn-extensional plutons that were emplaced at ca. 20 Ma during development of the Sierra Mazatán metamorphic core complex. The 40Ar/39Ar and K-Ar ages obtained for the El Palofierral orthogneiss, the Puerta del Sol granodiorite, the El Oquimonis granite, and the El Garambullo gabbro range from 26.3 ± 0.6 to 17.4 ± 1.0 Ma and are considered cooling ages associated with the exhumation of the metamorphic core complex.


Sign in / Sign up

Export Citation Format

Share Document