scholarly journals Evidence for and significance of the Late Cretaceous Asteroussia event in the Gondwanan Ios basement terranes

Solid Earth ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 2255-2275
Author(s):  
Sonia Yeung ◽  
Marnie Forster ◽  
Emmanuel Skourtsos ◽  
Gordon Lister

Abstract. The Late Cretaceous Asteroussia event as recorded in the Cyclades is a potential key to the tectonic evolution of Western Tethys. Microstructural analysis and 40Ar/39Ar geochronology on garnet–mica schists and the underlying granitoid basement terrane on the island of Ios demonstrates evidence of a Late Cretaceous high-pressure, medium-temperature (HP–MT) metamorphic event. This suggests that the Asteroussia crystalline nappe on Crete extended northward to include these Gondwanan tectonic slices. In this case, the northern part of the Asteroussia nappe (on Ios) is overlain by the terrane stack defined by the individual slices of the Cycladic Eclogite–Blueschist Unit, whereas in the south (in Crete) the Asteroussia slices are near the top of a nappe stack defined by the individual tectonic units of the external Hellenides. This geometry implies that accretion of the Ios basement terrane involved a significant leap of the subduction megathrust (250–300 km) southward. Accretion needs to have commenced at or about ∼38 Ma, when the already partially exhumed slices of the Cycladic Eclogite–Blueschist Unit began to thrust over the Ios basement. By ∼35–34 Ma, the subduction jump had been accomplished, and renewed rollback began the extreme extension that led to the exhumation of the Ios metamorphic core complex.

2020 ◽  
Author(s):  
Sonia Yeung ◽  
Marnie Forster ◽  
Emmanuel Skourtsos ◽  
Gordon Lister

Abstract. 40Ar/39Ar geochronology on garnet-mica schists and the underlying Gondwanan granitoid basement terrane on Ios demonstrates evidence of a Late Cretaceous high pressure, medium temperature (HP–MP) metamorphic event. This suggests that the Asteroussia crystalline nappe on Crete may extend northward and include Ios, in the Cyclades. If this is correct, the northern part of the Asteroussia nappe (on Ios) is overlain by the terrane stack defined by the individual slices of the Cycladic Eclogite-Blueschist Unit, whereas in the south (in Crete) the Asteroussia nappe is at the top of a nappe stack defined by the individual tectonic units of the external Hellenides. This geometry implies that the accretion of the Ios basement terrane involved a significant leap (250–300 km) southwards of the surface outcrop of the subduction megathrust. This accretion would have commenced at or about ~38 Ma, when the already exhumed terranes of the Cycladic Eclogite-Blueschist Unit had begun to thrust over the Ios basement. By ~35 Ma, we suggest the subduction jump had been accomplished, and renewed rollback began the extreme extension that led to the exhumation of the Ios metamorphic core complex.


2021 ◽  
Author(s):  
Sonia Yeung ◽  
Marnie Forster ◽  
Emmanuel Skourtsos ◽  
Gordon Lister

<div> <p>The Cretaceous arc system formed during closure of West Tethys closure has long been a research focus for crustal geometry and associated ore deposits. Understanding the Africa-Europe motion across time is the key to its resolution. Evidence as to the time that Tethys subduction initiated is preserved in subduction accreted tectonic slices such as in the Gondwanan basement terranes on Ios, Cyclades, Greece. <sup>40</sup>Ar/<sup>39</sup>Ar geochronology in its granitoid basement and the structurally overlying garnet-mica schist tectonic slice identified a Late Cretaceous high pressure, medium temperature (HP–MP) metamorphic event. The timing and metamorphic conditions are comparable with geochronology and metamorphic conditions reported from other Cycladic islands. We suggest the northward extension of the Asteroussia crystalline terrane on Crete should therefore include the Ios basement tectonic slices, thus revising the regional geometry of the terrane stack. The northern part of the Hellenic terrane stack is overlain by individual Cycladic Eclogite-Blueschist terrane slices (e.g., on Ios) and the southern part is underplated by the tectonic units of the external Hellenides (Crete). To make such an architecture possible, we propose a 250-300 km southward jump of the subduction megathrust when the Ios basement terranes were accreted to the European terrane stack. Such a significant leap of the subduction megathrust supports a tectonic mode switch in which crust above the subduction zone was first subjected to shortening followed by a stretching event.  Accretion of the Asteroussia slices to the terrane stack likely commenced at or about ~38 Ma. During accretion, the already stretched and exhumed terranes of the Cycladic Eclogite-Blueschist Unit begun to thrust over the newly accreted Ios basement. The subduction jump had likely been accomplished by ~35 Ma, with rollback recommencing after a period of flat slab subduction followed by slab break off in the new subduction zone. This would allow explanation of the extreme extension that exhumed the Ios basement terrane, with the Asteroussia slices defining the core of the Ios metamorphic core complex, followed by the onset of Oligo-Miocene extension and accompanying magmatism in the Cyclades.</p> </div>


2021 ◽  
Author(s):  
Marnie Forster ◽  
Gordon Lister

<p>Orogenic listening posts have been established along the northern margins of western Tethys: i) in the west and central Alps; ii) in the Cyclades, Aegean Sea, Greece; and iii) along a traverse in the NW Himalaya. We report on modelling and simulation of data from the conjoint inversion of argon geochronology and ultra-high-vacuum (UHV) diffusion experiments, on rocks from these locations. In the Alps, samples come from either side of the Lepontine dome, a metamorphic core complex that resulted from orogen-parallel extension, with a major pulse of stretching coinciding with the onset of the Eocene–Oligocene transition. In the Cyclades, the samples come from Ios, a metamorphic core complex that began its existence at about the same time, related to extreme extension caused by southward rollback of the Hellenic slab, after an immediately preceding accretion event that incorporated Gondwanan slices into the terrane-stack. In the NW Himalaya, samples come from yet another Tethyan metamorphic core complex, the giant schist and gneiss dome that includes the Tso Morari, in Ladakh, India.<span> </span></p><p>Inversion of data from these locations reveals unprecedented detail in the inferred temperature-time curve, allowing recognition that a rapid cooling event took place in the lower plate of the detachment system at each of these locations, almost at the same time. We discuss the tectonic implications of a synchronised tectonic mode switch at the start of the Eocene–Oligocene transition. In each location there was a preceding period of compressional orogenesis, involving accretion of multiple tectonic slices to the terrane stack after an accretion event, followed by a period during which extreme extension of the continental lithosphere appears to have taken place. This supports our 2001 hypothesis that tectonic mode switches during collisional orogenesis are globally synchronized, in consequence of torque balance being continuously maintained in the planetary assemblages of moving lithospheric plates. Accretion events perturb that torque balance, with tectonic mode switches the result of mechanical adjustment caused by the creation of new subduction systems, with the initiation of rollback offering a potential explanation for the rapid exhumation of core complexes in the over-riding lithosphere.</p>


2003 ◽  
Vol 140 (4) ◽  
pp. 421-441 ◽  
Author(s):  
UWE RING ◽  
CHRISTOPHER JOHNSON ◽  
RALF HETZEL ◽  
KLAUS GESSNER

Thermochronological data reveal that the Late Cretaceous–Tertiary nappe pile of the Anatolide belt of western Turkey displays a two-stage cooling history. Three crustal segments differing in structure and cooling history have been identified. The Central Menderes metamorphic core complex represents an ‘inner’ axial segment of the Anatolide belt and exposes the lowest structural levels of the nappe pile, whereas the two ‘outer’ submassifs, the Gördes submassif to the north and the Çine submassif to the south, represent higher levels of the nappe pile. A regionally significant phase of cooling in the Late Oligocene and Early Miocene affected the outer two submassifs and the upper structural levels of the Central Menderes metamorphic core complex. In the northern part of the Gördes submassif, cooling was related to top-to-the-NNE movement on the Simav detachment, as the apatite fission-track ages show a northward-younging trend in the direction of movement on this detachment. In the Çine submassif, relatively rapid cooling in Late Oligocene and Early Miocene times may have been related to top-to-the-S extensional reactivation of the basal thrust of the overlying Lycian nappes. The second phase of cooling in the Anatolide belt is related to Pliocene to Recent extension resulting in the formation of the Central Menderes metamorphic core complex in the inner part of the Anatolide belt. Core-complex development caused the formation of supra-detachment graben, which document the ongoing separation of the Central Menderes metamorphic core complex from the outer submassifs.


2019 ◽  
Author(s):  
Michael L. Wells ◽  
◽  
Thomas Hoisch ◽  
Suzanne R. Mulligan ◽  
Samuel Wright ◽  
...  

2010 ◽  
Vol 61 (6) ◽  
pp. 451-461 ◽  
Author(s):  
Frederik Kirst ◽  
Sascha Sandmann ◽  
Thorsten Nagel ◽  
Nikolaus Froitzheim ◽  
Marian Janák

Tectonic evolution of the southeastern part of the Pohorje Mountains (Eastern Alps, Slovenia)Field relations and deformation structures in the southeastern part of the Pohorje Mountains constrain the tectonic evolution of the Austroalpine high-pressure/ultrahigh pressure (HP/UHP) terrane. The Slovenska Bistrica Ultramafic Complex (SBUC) forms a large (ca. 8 × 1 km size) body of serpentinized harzburgite and dunite including minor garnet peridotite and is associated with partly amphibolitized eclogite bodies. The SBUC occurs in the core of an isoclinal, recumbent, northward closing antiform and is mantled by metasedimentary rocks, mostly gneisses and a few marbles, including isolated eclogite/amphibolite lenses. Before this folding, the SBUC formed the deepest part of the exposed terrane. We interpret the SBUC to be derived from near-MOHO, uppermost mantle which was intruded by gabbros in the subsurface of a Permian rift zone. During Cretaceous intracontinental subduction, the SBUC was most likely part of the footwall plate which experienced HP to UHP metamorphism and was folded during exhumation. In the Miocene, the Pohorje Pluton intruded and, subsequently, the metamorphic rocks together with the pluton were deformed probably due to east-west extension and contemporaneous north-south shortening, thus forming an antiformal metamorphic core complex.


Sign in / Sign up

Export Citation Format

Share Document