Seasonal methane and carbon dioxide emissions from the coastal nearshore of the Kolyma river, Siberia.

Author(s):  
Juri Palmtag ◽  
Cara Manning ◽  
Michael Bedington ◽  
Matthias Fuchs ◽  
Mathias Göckede ◽  
...  

<p>Arctic rivers deliver ≈11% of global river discharge into the Arctic Ocean, while this ocean represents only ≈1% of the global ocean volume. Ongoing climate warming across the Arctic, and specifically Siberia, has led to regional-scale changes in precipitation patterns, greater rates of permafrost thaw and active layer deepening, as well as enhanced riverbank and coastal erosion. Combined, these climatic and cryospheric perturbations have already resulted in increased freshwater discharge and changes to constituent loads (e.g. dissolved organic carbon - OC) supplied from land to the Arctic Ocean.</p><p>To date, the majority of studies examining terrestrial organic matter (OM) delivery to the Arctic Ocean have focused almost entirely on freshwater (riverine) or fully-marine environments and been conducted during late summer seasons – often due to logistical constraints. Despite this, an improved understanding of how OC is transformed, mineralised and released during transit through the highly reactive nearshore estuarine environment is critical for examining the fate and influence of terrestrial OM on the Arctic Ocean. Capturing seasonality over the open water period is also necessary to identify current OM fluxes to the ocean vs the atmosphere, and aid in constraining how future changes may modify them.</p><p>Here we focus upon carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) measurements collected during six repeated transects of the Kolyma River and nearshore zone (covering ~120 km) from 2019. Transects spanned almost the entirety of the riverine open water season (June to September). We use these results, in parallel with gas concentrations derived from prior studies, to develop and validate a simple box-model of gas emissions from the nearshore zone.</p><p>Observations and model‐derived output data reveal that more than 50% of the cumulative gross delivery of CH<sub>4</sub> and CO<sub>2</sub> to the coastal ocean occurred during the freshet period with dissolved CH<sub>4</sub> concentrations in surface water reaching 660 Nanomole per liter [nmol/l]. These results demonstrate the relevance of seasonal dynamics and its spatial variability which are needed in order to estimate greenhouse gas fluxes on an annual basis.</p><p>More accurate understanding of land-ocean carbon fluxes in the Arctic is therefore crucial to mitigate the effects of climate change and to support the decisions of policy makers.</p>

Science ◽  
2020 ◽  
Vol 369 (6500) ◽  
pp. 198-202 ◽  
Author(s):  
K. M. Lewis ◽  
G. L. van Dijken ◽  
K. R. Arrigo

Historically, sea ice loss in the Arctic Ocean has promoted increased phytoplankton primary production because of the greater open water area and a longer growing season. However, debate remains about whether primary production will continue to rise should sea ice decline further. Using an ocean color algorithm parameterized for the Arctic Ocean, we show that primary production increased by 57% between 1998 and 2018. Surprisingly, whereas increases were due to widespread sea ice loss during the first decade, the subsequent rise in primary production was driven primarily by increased phytoplankton biomass, which was likely sustained by an influx of new nutrients. This suggests a future Arctic Ocean that can support higher trophic-level production and additional carbon export.


2020 ◽  
Author(s):  
Changlong Guan ◽  
Jingkai Li

<p>For the Arctic surface waves, one of the most uncontroversial viewpoints is that their escalation in the past few years is mainly caused by the ice extent reduction. Ice retreat enlarges the open water area, i.e., the effective fetch, and thus allows more wind input energy and available distance for wave evolution. This knowledge has been supported by a few previous studies on the Arctic waves which analyzed the correlation between time-series variations in wave height and ice coverage. However, from the perspective of space, the detailed relationship between retreating ice cover and increasing surface waves is not well studied. Hence, we performed such a study for the whole Arctic and its subregions, which will be helpful for a better understanding of the wave climate and for forecasting waves in the Arctic Ocean.</p><p>Wave data are produced by twelve-year (2007-2018) hindcasts of summer melt seasons (May-Sept.) and numerical tests with WAVEWATCH III. When a viscoelastic wave-ice model and a spherical multiple-cell grid are applied, simulated wave heights agree with available buoy data and previous research. After the validations, simulated significant wave heights over twelve-year summer melt seasons are used to demonstrate the detailed relationship between the escalation of wave height and reduction of ice extent for the whole Arctic and seven subregions. Through least square regression, we find that the mean wave height in the Arctic Ocean will increase by 0.071m (10<sup>6</sup>km<sup>2</sup>)<sup>-1</sup> when the ice extent is smaller than 9.4×10<sup>6</sup>km<sup>2</sup>, and roughly 51% is contributed by the enlarged fetch. By analyzing the nondimensional wave energy and comparing the simulated wave height with Wilson IV, we prove the swell is widespread during the summertime in the current Arctic Ocean. Furthermore, we also display the variations in probabilities of occurrence of large waves as ice-edge retreats in seven subregions. Assuming that an ice free period occurs in the Arctic in September, the model results show that the simulated mean wave height is approximately 1.6m and the large waves occur much more frequently, which mean that the growth rate of wave height will be higher if the minimum ice extent keeps reducing in the future.</p>


2007 ◽  
Vol 4 (6) ◽  
pp. 897-931
Author(s):  
R. C. Levine ◽  
D. J. Webb

Abstract. Following meteorological practice the definition of available potential energy in the ocean is conventionally defined in terms of the properties of the global ocean. However there is also a requirement for a localised definition, for example the energy released when shelf water cascades down a continental shelf in the Arctic and enters a boundary current. In this note we start from first principals to obtain an exact expression for the available energy (AE) in such a situation. We show that the available energy depends on enstrophy and gravity. We also show that it is exactly equal to the work done by the pressure gradient and by buoyancy. The results are used to investigate the distribution of AE in the Barents Sea and surrounding regions relative to the interior of the Arctic Ocean. We find that water entering the Barents Sea from the Atlantic already has a high AE, that it is increased by cooling but that much of the increase is lost overcoming turbulence during the passage through the region to the Arctic Ocean. However on entering the Arctic enough available energy remains to drive a significant current around the margin of the ocean. The core of raised available energy also acts as a tracer which can be followed along the continental slope beyond the dateline.


2016 ◽  
Vol 30 (7) ◽  
pp. 1054-1068 ◽  
Author(s):  
George Tanski ◽  
Nicole Couture ◽  
Hugues Lantuit ◽  
Antje Eulenburg ◽  
Michael Fritz

2021 ◽  
Author(s):  
Shun Yang ◽  
Haibin Song ◽  
Kun Zhang

<p>The eddies are ubiquitous in the ocean and play an important role in the transportation and redistribution of heat, salt, carbon, nutrients and other materials in the global ocean, thus can regulate global climate and affect the distribution of marine organism. Compared with mesoscale eddies, submesoscale vortices (SVs) have smaller spatial and temporal scales, which impose higher requirements on observation and simulation. The oceanic SVs have a strong vertical velocity, which provides an important supply of nutrients in the upper ocean.</p><p>Many researchers have studied the SVs in the Arctic Ocean by physical oceanography methods (e.g., <em>in-situ </em>measurements and satellite observations). Here, we found a perfect bowl-like SV using a new method named seismic oceanography (SO). SO can use multichannel seismic (MCS) reflection data to produce surprisingly detailed images of water column. Compared with the traditional physical oceanography methods, SO has the advantages of high acquisition efficiency, high lateral resolution (~10 m) and full depth imaging of seawater.</p><p>We used MCS data to image the water column in the in autumn Northeast Chukchi Sea, and captured a perfect bowl-like structure with a depth range of ~200-620m. The structure is almost bilaterally symmetric and has dip angles of 4.8° and 5.5° on the left and on the right, respectively. And it has a horizontal scale of about 12 km at the top and 4.5 km at the bottom, and both the top and bottom of it are near horizontal. The reflections are almost blank in its interior, but are intense and very narrow (~30 m thick) at the lateral boundaries. This indicated that the interior water is homogeneous and quite different from that around it. Fortunately, there is an XBT station near the seismic line and collected almost simultaneously (only one day apart) with the seismic line. The XBT station shows obvious high temperature anomaly over 2°C at the depth of 210-700 m. Therefore, we concluded the structure is a subsurface warm SV, i.e. anticyclonic warm eddy, and may be a submesoscale coherent vortex (SCV). The anomalies from the surrounding water masses indicate that the SV was created at the edge of the Arctic Ocean and then advected here.</p><p>In addition, we used Rossby number (Ro) and Okubo-Weiss (OW) parameter calculated from daily-averaged re-analysis hydrographic data (~3.5 km of grid spacing at 75°N ) from Copernicus Marine Environment Monitoring Service (CMEMS) to analyze the SV. Result shows that the values of the Ro and OW parameter in the area of the SV are both negative. This also suggests that this SV is an anticyclone. This submesoscale anticyclonic vortex may be generated from the friction effect between the warm inflow from the North Pacific and the right wall of Barrow Canyon after passing through the Bering Strait, and then transported to the Northeast of Chukchi Sea by the Beaufort Gyre.</p>


2020 ◽  
Author(s):  
Van Liem Nguyen ◽  
Birgit Wild ◽  
Örjan Gustafsson ◽  
Igor Semiletov ◽  
Oleg Dudarev ◽  
...  

<p>Widespread accelerated permafrost thawing is predicted for this century and beyond. This threatens to remobilize the large amounts of Mercury (Hg) currently ‘locked’ in Arctic permafrost soils to the Arctic Ocean and thus potentially lead to severe consequences for human and wildlife health. Future risks of Arctic Hg in a warmer climate are, however, poorly understood. One crucial knowledge gap to fill is the fate of Hg once it enters the marine environment on the continental shelves. Arctic rivers are already today suggested to be the main source of Hg into the Arctic Ocean, with dissolved and particulate organic matter (DOM and POM, respectively) identified as important vectors for the land to sea transport.</p><p>In this study, we have investigated total Hg (HgT) and monomethylmercury (MeHg) concentrations in surface sediments from the East Siberian Arctic Shelf (ESAS) along a transect from the Lena river delta to the Laptev Sea continental slope. The ESAS is the world’s largest continental shelf and receives large amounts of organic carbon by the great Arctic Russian rivers (e.g., Lena, Indigirka and Kolyma), remobilized from continuous and discontinuous permafrost regions in the river catchments, and from coastal erosion. Data on HgT and MeHg levels in ESAS sediments is however limited. Here, we observed concentrations of Hg ranging from 30 to 96 ng Hg g<sup>-1</sup> d.w. of HgT, and 0.03 to 9.5 ng Hg g<sup>-1</sup> d.w. of MeHg. Similar concentrations of HgT were observed close to the river delta (54 ± 19 ng Hg g<sup>-1</sup> d.w.), where >95 % of the organic matter is of terrestrial origin, and the other section of the transect (42 ± 7 ng Hg g<sup>-1</sup> d.w.) where the terrestrial organic matter is diluted with carbon from marine sources. In contrast, we observed higher concentrations of MeHg close to the river delta (0.72 ± 0.71 ng Hg g<sup>-1</sup> d.w. as MeHg) than further out on the continental shelf (0.031 ± 0.71 ng Hg g<sup>-1</sup> d.w. as MeHg). We also observed a positive correlation between the MeHg:Hg ratio and previously characterized molecular markers of terrestrial organic matter (Bröder et al. Biogeosciences (2016) & Nature Com. (2018)). We thus suggest riverine inputs, rather than in situ MeHg formation, to explain observed MeHg trends.</p>


Sign in / Sign up

Export Citation Format

Share Document