scholarly journals Updated Operational Implementation of the Canadian Forest Fire Weather Index System in Ireland

2021 ◽  
Author(s):  
Padraig Flattery ◽  
Klara Finkele ◽  
Paul Downes ◽  
Ferdia O'Leary ◽  
Ciaran Nugent

<p>Since 2006 the Canadian Forest Fire Weather Index System (FWI) has been used operationally at Met Éireann to predict the risk of forest fires in Ireland (Walsh, S, 2006). Although only around 11% or ca 770,000 ha of the total land area of Ireland is afforested, there are also large areas of open mountain and peatlands that are covered in grasses, dwarfshrub and larger woody shrub type vegetation which can provide ready fuel for spring wildfires, when suitable conditions arise. Following winter, much of this vegetation is either dead or has a very low live moisture content, and the flammability of this vegetation can be readily influenced by prevailing weather, most especially following prolonged dry periods. The Department of Agriculture, Food and Marine is the Forest Protection authority in Ireland and issues Fire Danger Notices as part of this work. These notices permit improved preparedness for fire responses and are based on information provided by Met Éireann on the current status of FWI and FWI components using observation data at synoptic stations and the predicted FWI for the next five days ahead based on numerical weather prediction input data.</p><p>The FWI is based on</p><ul><li>three different types of forest fuel, ie how quickly these dry out/get rewetted. These are the Fine Fuels Moisture Code (FFMC), the Duff Moisture Code (DMC) and the Drought Code (DC).</li> <li>components based on fire behaviour: the Initial Spread Index (ISI), the Build-up Index (BUI), and the Fire Weather Index (FWI) which represents fire intensity as energy output rate per unit length of fire front. It is then used to determine the Daily Severity Rating (DSR) of the fire danger. </li> </ul><p>Of these components, the FFMC and ISI components have been found to provide the most accurate indication of risk under Irish conditions, based on the fuels involved and ignition patterns observed to date.</p><p>The DSR was based on a climatology of 1971 to 2005 at the time of operational implantation of the FWI at Met Éireann. An updated climatology based on the new reference period of 1990 to 2020 will be shown as well as the change of the 98 percentiles of extreme rating using this new reference period.  </p><p><strong>Walsh, S.</strong> “Implementation in Ireland of the Canadian Forest Fire Weather Index System.” In <em>Making Science Work on the Farm. A Workshop on Decision Support Systems for Irish Agriculture</em>, 120–126. Dublin: AGMET, 2007. </p>

2016 ◽  
Vol 16 (5) ◽  
pp. 1217-1237 ◽  
Author(s):  
Mark C. de Jong ◽  
Martin J. Wooster ◽  
Karl Kitchen ◽  
Cathy Manley ◽  
Rob Gazzard ◽  
...  

Abstract. Wildfires in the United Kingdom (UK) pose a threat to people, infrastructure and the natural environment. During periods of particularly fire-prone weather, wildfires can occur simultaneously across large areas, placing considerable stress upon the resources of fire and rescue services. Fire danger rating systems (FDRSs) attempt to anticipate periods of heightened fire risk, primarily for early-warning and preparedness purposes. The UK FDRS, termed the Met Office Fire Severity Index (MOFSI), is based on the Fire Weather Index (FWI) component of the Canadian Forest FWI System. The MOFSI currently provides daily operational mapping of landscape fire danger across England and Wales using a simple thresholding of the final FWI component of the Canadian FWI System. However, it is known that the system has scope for improvement. Here we explore a climatology of the six FWI System components across the UK (i.e. extending to Scotland and Northern Ireland), calculated from daily 2km × 2km gridded numerical weather prediction data and supplemented by long-term meteorological station observations. We used this climatology to develop a percentile-based calibration of the FWI System, optimised for UK conditions. We find this approach to be well justified, as the values of the "raw" uncalibrated FWI components corresponding to a very "extreme" (99th percentile) fire danger situation vary by more than an order of magnitude across the country. Therefore, a simple thresholding of the uncalibrated component values (as is currently applied in the MOFSI) may incur large errors of omission and commission with respect to the identification of periods of significantly elevated fire danger. We evaluate our approach to enhancing UK fire danger rating using records of wildfire occurrence and find that the Fine Fuel Moisture Code (FFMC), Initial Spread Index (ISI) and FWI components of the FWI System generally have the greatest predictive skill for landscape fire activity across Great Britain, with performance varying seasonally and by land cover type. At the height of the most recent severe wildfire period in the UK (2 May 2011), 50 % of all wildfires occurred in areas where the FWI component exceeded the 99th percentile. When all wildfire events during the 2010–2012 period are considered, the 75th, 90th and 99th percentiles of at least one FWI component were exceeded during 85, 61 and 18 % of all wildfires respectively. Overall, we demonstrate the significant advantages of using a percentile-based calibration approach for classifying UK fire danger, and believe that our findings provide useful insights for future development of the current operational MOFSI UK FDRS.


1985 ◽  
Vol 15 (6) ◽  
pp. 1194-1195
Author(s):  
Robert S. McAlpine ◽  
Thomas G. Eiber

Weather data from Upsala and Atikokan, Ontario, were used to determine the Canadian Forest Fire Weather Index System values and to calculate the soil moisture for two soil types using the Thornthwaite water balance. The Duff Moisture Code and the Drought Code were found to give excellent correlations with the total soil moisture content under most weather patterns.


2007 ◽  
Vol 37 (10) ◽  
pp. 1987-1998 ◽  
Author(s):  
S. G. Otway ◽  
E. W. Bork ◽  
K. R. Anderson ◽  
M. E. Alexander

The manner in which trembling aspen ( Populus tremuloides Michx.) forest duff moisture changes during the growing season was investigated in Elk Island National Park, Alberta, Canada. A calibration–validation procedure incorporating one calibration site with moisture sampling across three topographic positions was used to develop predictive models, which were subsequently compared with 12 validation sites across three vegetation types throughout the Park. Duff moisture was modelled against the Duff Moisture Code and Drought Code components of the Canadian Forest Fire Weather Index System. Spring, summer, and fall rates of duff moisture change differed (P < 0.050) during calibration, with moisture loss greatest in spring. Additionally, while moisture changes on the south-facing and crest topographic positions were similar during spring, moisture losses were greater (P < 0.050) at these locations compared with the north-facing landscape position. Correlation analysis indicated that duff inorganic content and bulk density were both related to duff moisture but were limited in importance compared with weather-based influences. When compared with predicted values obtained from calibrated models, moderate predictability of duff moisture was found (mean absolute error = 20.7%–54.2%). Relative to the national standard equations, unique but very different empirical relationships were developed between the Duff Moisture Code and Drought Code and the moisture content of the duff layer in aspen forest stands found in Elk Island National Park.


2011 ◽  
Vol 20 (8) ◽  
pp. 963 ◽  
Author(s):  
Xiaorui Tian ◽  
Douglas J. McRae ◽  
Jizhong Jin ◽  
Lifu Shu ◽  
Fengjun Zhao ◽  
...  

The Canadian Forest Fire Weather Index (FWI) system was evaluated for the Daxing'anling region of northern China for the 1987–2006 fire seasons. The FWI system reflected the regional fire danger and could be effectively used there in wildfire management. The various FWI system components were classified into classes (i.e. low to extreme) for fire conditions found in the region. A total of 81.1% of the fires occurred in the high, very high and extreme fire danger classes, in which 73.9% of the fires occurred in the spring (0.1, 9.5, 33.3 and 33.1% in March, April, May and June). Large wildfires greater than 200 ha in area (16.7% of the total) burnt 99.2% of the total burnt area. Lightning was the main ignition source for 57.1% of the total fires. Result show that forest fires mainly occurred in deciduous coniferous forest (61.3%), grass (23.9%) and deciduous broad leaved forest (8.0%). A bimodal fire season was detected, with peaks in May and October. The components of FWI system were good indicators of fire danger in the Daxing'anling region of China and could be used to build a working fire danger rating system for the region.


1998 ◽  
Vol 8 (4) ◽  
pp. 217 ◽  
Author(s):  
MD Flannigan ◽  
BM Wotton ◽  
S Ziga

In Canada, many fire management agencies interpolate indexes of the Fire Weather Index System to estimate the fire danger between weather stations. Difficulties with interpolation arise because summer precipitation can be highly variable over short distances. This variability hinders the usefulness of interpolating precipitation, which is one of the inputs for the Fire Weather Index System. Precipitation estimates from the Canadian Atmospheric Environment Service radar at Upsala, Ontario, were used to determine if this will enable a more accurate measure of the fire danger over the region. Three methods of interpolation of the fire danger between weather stations were compared: first, the standard practice of interpolating fire weather indexes from weather stations to any specified location; second, interpolating the weather variables, temperature, relative humidity, wind speed and precipitation from the weather station to any specified site and then calculating the fire weather indexes; third, interpolating weather variables as in Method 2 above except using the precipitation estimate from the radar and then calculating the fire weather indexes for any specified site. Overall, results indicate that the standard procedure of interpolating the fire weather indexes performs better than the other two methods. However, there are indexes where the other methods perform best (e.g., the fine fuel moisture code is best determined by using the radar precipitation estimation method). Fire management agencies should continue to use the standard practice of interpolating fire weather indexes to estimate fire danger between weather stations. Factors influencing the performance of the radar estimated precipitation method of estimating fire danger are discussed along with potential application of precipitation radar for fire management purposes.


1988 ◽  
Vol 18 (1) ◽  
pp. 128-131 ◽  
Author(s):  
R. Trowbridge ◽  
M. C. Feller

Unsuccessful attempts to ignite slash resulting from the mechanical knocking down of lodgepole pine in west central British Columbia led to a short-term investigation of the relationship between the Fine Fuel Moisture Code of the Canadian Forest Fire Weather Index System and the moisture content of various fine fuel components <1 cm in diameter. Of the types of fuel sampled, the moisture contents of B.C. Forest Service fuel moisture sticks and aged slash were similar to, and well correlated (r = 0.79 and 0.81, respectively) with, the equivalent moisture content calculated from the Fine Fuel Moisture Code. The Fine Fuel Moisture Code was not designed to relate to the moisture content of uncured fuels. Thus, the moisture contents of fresh living slash (material from knocked down trees still attached to living roots) and of fresh dead slash (material unattached to living trees that had not yet experienced a complete fire season in which to fully cure) were poorly correlated with moisture content (r = 0.16 and 0.42, respectively). The moisture content of the progressively curing, needle-bearing fresh dead slash was relatively high at the beginning of the fire season, but became similar to the moisture content during the first half of July. This suggests that the Fine Fuel Moisture Code can also be used to predict the moisture content of such fine slash after these fuels have cured for approximately 3 months during the snow-free period.


Sign in / Sign up

Export Citation Format

Share Document