Dust Particle Tracking at Comet 67P/Churyumov–Gerasimenko

2020 ◽  
Author(s):  
Marius Pfeifer ◽  
Jessica Agarwal

<p>We present the newest iteration of our particle tracking algorithm and highlight findings based on its application to different data sets. The intended use of the algorithm is to analyze image sequences taken by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) of the Rosetta spacecraft during the outbound perihelion phase of comet 67P/Churyumov-Gerasimenko. During this active phase, a lot of material was being ejected, in part as relatively large, boulder-sized objects (dm to m). With our work, we hope to better understand the processes that are responsible for the ejection and those that might affect the flight path of the particles once they are lifted. </p>

2014 ◽  
Vol 31 (8) ◽  
pp. 1279-1285 ◽  
Author(s):  
Javier Mazzaferri ◽  
Joannie Roy ◽  
Stephane Lefrancois ◽  
Santiago Costantino

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2858
Author(s):  
Kelly Ka-Lee Lai ◽  
Timothy Tin-Yan Lee ◽  
Michael Ka-Shing Lee ◽  
Joseph Chi-Ho Hui ◽  
Yong-Ping Zheng

To diagnose scoliosis, the standing radiograph with Cobb’s method is the gold standard for clinical practice. Recently, three-dimensional (3D) ultrasound imaging, which is radiation-free and inexpensive, has been demonstrated to be reliable for the assessment of scoliosis and validated by several groups. A portable 3D ultrasound system for scoliosis assessment is very much demanded, as it can further extend its potential applications for scoliosis screening, diagnosis, monitoring, treatment outcome measurement, and progress prediction. The aim of this study was to investigate the reliability of a newly developed portable 3D ultrasound imaging system, Scolioscan Air, for scoliosis assessment using coronal images it generated. The system was comprised of a handheld probe and tablet PC linking with a USB cable, and the probe further included a palm-sized ultrasound module together with a low-profile optical spatial sensor. A plastic phantom with three different angle structures built-in was used to evaluate the accuracy of measurement by positioning in 10 different orientations. Then, 19 volunteers with scoliosis (13F and 6M; Age: 13.6 ± 3.2 years) with different severity of scoliosis were assessed. Each subject underwent scanning by a commercially available 3D ultrasound imaging system, Scolioscan, and the portable 3D ultrasound imaging system, with the same posture on the same date. The spinal process angles (SPA) were measured in the coronal images formed by both systems and compared with each other. The angle phantom measurement showed the measured angles well agreed with the designed values, 59.7 ± 2.9 vs. 60 degrees, 40.8 ± 1.9 vs. 40 degrees, and 20.9 ± 2.1 vs. 20 degrees. For the subject tests, results demonstrated that there was a very good agreement between the angles obtained by the two systems, with a strong correlation (R2 = 0.78) for the 29 curves measured. The absolute difference between the two data sets was 2.9 ± 1.8 degrees. In addition, there was a small mean difference of 1.2 degrees, and the differences were symmetrically distributed around the mean difference according to the Bland–Altman test. Scolioscan Air was sufficiently comparable to Scolioscan in scoliosis assessment, overcoming the space limitation of Scolioscan and thus providing wider applications. Further studies involving a larger number of subjects are worthwhile to demonstrate its potential clinical values for the management of scoliosis.


2019 ◽  
Vol 630 ◽  
pp. A18 ◽  
Author(s):  
N. Attree ◽  
L. Jorda ◽  
O. Groussin ◽  
S. Mottola ◽  
N. Thomas ◽  
...  

Aims. We use four observational data sets, mainly from the Rosetta mission, to constrain the activity pattern of the nucleus of comet 67P/Churyumov-Gerasimenko (67P). Methods. We developed a numerical model that computes the production rate and non-gravitational acceleration of the nucleus of comet 67P as a function of time, taking into account its complex shape with a shape model reconstructed from OSIRIS imagery. We used this model to fit three observational data sets: the trajectory data from flight dynamics; the rotation state as reconstructed from OSIRIS imagery; and the water production measurements from ROSINA of 67P. The two key parameters of our model, adjusted to fit the three data sets all together, are the activity pattern and the momentum transfer efficiency (i.e., the so-called η parameter of the non-gravitational forces). Results. We find an activity pattern that can successfully reproduce the three data sets simultaneously. The fitted activity pattern exhibits two main features: a higher effective active fraction in two southern super-regions (~10%) outside perihelion compared to the northern regions (<4%), and a drastic rise in effective active fraction of the southern regions (~25−35%) around perihelion. We interpret the time-varying southern effective active fraction by cyclic formation and removal of a dust mantle in these regions. Our analysis supports moderate values of the momentum transfer coefficient η in the range 0.6–0.7; values η ≤ 0.5 or η ≥ 0.8 significantly degrade the fit to the three data sets. Our conclusions reinforce the idea that seasonal effects linked to the orientation of the spin axis play a key role in the formation and evolution of dust mantles, and in turn, they largely control the temporal variations of the gas flux.


2017 ◽  
Vol 13 (S332) ◽  
pp. 196-201
Author(s):  
Maria Nikolayevna Drozdovskaya ◽  
Ewine F. van Dishoeck ◽  
Martin Rubin ◽  
Jes Kristian Jørgensen ◽  
Kathrin Altwegg

AbstractThe chemical evolution of a star- and planet-forming system begins in the prestellar phase and proceeds across the subsequent evolutionary phases. The chemical trail from cores to protoplanetary disks to planetary embryos can be studied by comparing distant young protostars and comets in our Solar System. One particularly chemically rich system that is thought to be analogous to our own is the low-mass IRAS 16293-2422. ALMA-PILS observations have made the study of chemistry on the disk scales (<100 AU) of this system possible. Under the assumption that comets are pristine tracers of the outer parts of the innate protosolar disk, it is possible to compare the composition of our infant Solar System to that of IRAS 16293-2422. The Rosetta mission has yielded a wealth of unique in situ measurements on comet 67P/C-G, making it the best probe to date. Herein, the initial comparisons in terms of the chemical composition and isotopic ratios are summarized. Much work is still to be carried out in the future as the analysis of both of these data sets is still ongoing.


Sign in / Sign up

Export Citation Format

Share Document