3D geological model of Uruk Sulcus on Ganymede: modeling approach and first insights

2021 ◽  
Author(s):  
Riccardo Pozzobon ◽  
Costanza Rossi ◽  
Alice Lucchetti ◽  
Matteo Massironi ◽  
Maurizio Pajola ◽  
...  
2010 ◽  
Vol 02 (01) ◽  
pp. 6-10
Author(s):  
Kun ZHENG ◽  
Fang ZHOU ◽  
Pei LIU ◽  
Peng KAN

2016 ◽  
Vol 35 ◽  
pp. 27-30
Author(s):  
Peter B.E. Sandersen ◽  
Thomas Vangkilde-Pedersen ◽  
Flemming Jørgensen ◽  
Richard Thomsen ◽  
Jørgen Tulstrup ◽  
...  

As part of its strategy, the Geological Survey of Denmark and Greenland (GEUS) is to develop a national, digital 3D geological model of Denmark that can act as a publicly accessible database representing the current, overall interpretation of the subsurface geology. A national model should be under constant development, focusing on meeting the current demands from society. The constant improvements in computer capacity and software capabilities have led to a growing demand for advanced geological models and 3D maps that meet the current technical standards (Berg et al. 2011). As a consequence, the users expect solutions to still more complicated and sophisticated problems related to the subsurface. GEUS has a long tradition of making 2D maps of subsurface layer boundaries and near-surface geology (Fredericia & Gravesen 2014), but in the change from 2D to 3D and when combining data in new ways, new geological knowledge is gained and new challenges of both technical and organisational character will arise. The purpose of this paper is to present the strategy for the national 3D geological model of Denmark and the planned activities for the years ahead. The paper will also reflect on some of the challenges related to making and maintaining a nationwide 3D model. Initially, the model will only include the Danish onshore areas, with the Danish offshore areas and Greenland to be added later using a similar general setup.


2021 ◽  
Author(s):  
Mark Jessell

<p>In geological settings characterised by folded and faulted strata, and where good field data exist, we have been able to automate a large part of the 3D modelling process directly from the raw geological database (maps, bedding orientations and drillhole data). The automation is based upon the deconstruction of the geological maps and databases into positional, gradient and spatial and temporal topology information, and the combination of deconstructed data into augmented inputs for 3D geological modelling systems, notably LoopStructural and GemPy.</p><p>When we try to apply this approach to more complex terranes, such as greenstone belts, we come across two types of problem:</p><ul><li>1) Insufficient structural data, since the more complexly deformed the geology, the more we need to rely on secondary structural information, such as fold axial traces and vergence to ‘solve’ the structures. Unfortunately these types of data are not always stored in national geological databases. One approach to overcoming this is to analyse the simpler (i.e. bedding) data to try and estimate the secondary information automatically.</li> </ul><p> </p><ul><li>2) The available information is unsuited to the logic of the modelling system. Most modern modelling platforms assume the knowledge of a chronostratigraphic hierarchy, however, especially in more complexly deformed regions, a lithostratigraphy may be all that is available. Again a pre-processing of the map and stratigraphic information may be possible to overcome this problem.</li> </ul><p>This presentation will highlight the progress that has been made, as well as the road-blocks to universal automated 3D geological model construction.</p><p> </p><p>We acknowledge the support of the MinEx CRC and the Loop: Enabling Stochastic 3D Geological Modelling (LP170100985) consortia. The work has been supported by the Mineral Exploration Cooperative Research Centre whose activities are funded by the Australian Government's Cooperative Research Centre Programme. This is MinEx CRC Document 2020/xxx.</p><p> </p>


2021 ◽  
Author(s):  
Léo Marconato ◽  
Philippe-Hervé Leloup ◽  
Cécile Lasserre ◽  
Séverine Caritg ◽  
Romain Jolivet ◽  
...  

<div> <div> <div> <p>The 2019, M<sub>w</sub>4.9 Le Teil earthquake occurred in southeastern France, causing important damage in a slow deforming region. Field based, remote sensing and seismological studies following the event revealed its very shallow depth, a rupture length of ~5 km with surface rupture evidences and a thrusting mechanism. We further investigate this earthquake by combining geological field mapping and 3D geology, InSAR time series analysis and coseismic slip inversion.</p> <p>From structural, stratigraphic and geological data collected around the epicenter, we first produce a 3D geological model over a 70 km<sup>2</sup> and 3 km deep zone surrounding the 2019 rupture, using the GeoModeller software. This model includes the geometry of the main faults and geological layers, and especially a geometry for La Rouvière Fault, an Oligocene normal fault likely reactivated during the earthquake.</p> <p>We also generate a time series of the surface displacement by InSAR, based on Sentinel-1 data ranging from early January 2019 to late January 2020, using the NSBAS processing chain. The spatio-temporal patterns of the surface displacement for this limited time span show neither clear pre-seismic signal nor significant postseismic slip. We extract from the InSAR time series the coseismic displacement pattern, and in particular the along-strike slip distribution that shows spatial variations. The maximum relative displacement along the Line-Of-Sight is up to ~16 cm and is located in the southwestern part of the rupture.</p> <p>We then invert for the slip distribution on the fault from the InSAR coseismic surface displacement field. We use a non-negative least square approach based on the CSI software and the fault surface trace defined in the 3D geological model, exploring the range of plausible fault dip values. Best-fitting dips range between 55° and 60°. Such values are slightly lower than those measured on La Rouvière Fault planes in the field. Our model confirms the reactivation of La Rouvière fault, with reverse slip at very shallow depth and two main slip patches reaching 30 cm and 24 cm of slip at 400-500m depth. We finally discuss how the 3D fault geometry and geological configuration could have impacted the slip distribution and propagation during the earthquake.</p> <p>This study is a step to better quantify strain accumulation and assess the seismic hazard associated with other similar faults along the Cévennes fault system, in a densely populated area hosting several nuclear plants.</p> </div> </div> </div>


2019 ◽  
Vol 10 (2) ◽  
pp. 371-393
Author(s):  
Mohamed F. Abu-Hashish ◽  
Hamdalla A. Wanas ◽  
Emad Madian

Abstract This study aims to construct 3D geological model using the integration of seismic data with well log data for reservoir characterization and development of the hydrocarbon potentialities of the Upper Cretaceous reservoirs of GPT oil field. 2D seismic data were used to construct the input interpreted horizon grids and fault polygons. The horizon which cut across the wells was used to perform a comprehensive petrophysical analysis. Structural and property modeling was distributed within the constructed 3D grid using different algorithms. The workflow of the 3D geological model comprises mainly the structural and property modeling. The structural model includes fault framework, pillar girding, skeleton girding, horizon modeling and zonation and layering modeling processes. It shows system of different oriented major and minor faults trending in NE–SW direction. The property modeling process was performed to populate the reservoir facies and petrophysical properties (volume of shale (Vsh), fluid saturations (Sw and Sh), total and effective porosities (Φt and Φe), net to gross thickness and permeability) as extracted from the available petrophysical analysis of wells inside the structural model. The model represents a detailed zonation and layering configuration for the Khoman, Abu Roash and Bahariya formations. The 3D geological model helps in the field development and evaluates the hydrocarbon potentialities and optimizes production of the study area. It can be also used to predict reservoir shape and size, lateral continuity and degree of interconnectivity of the reservoir, as well as its internal heterogeneity.


2019 ◽  
Author(s):  
Xiaohua Pan ◽  
Aung KoKo Nyo ◽  
Zarli Aung ◽  
Kiefer Chiam ◽  
Defu Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document