scholarly journals Incremental improvements of 2030 targets insufficient to achieve the Paris Agreement goals

2020 ◽  
Vol 11 (3) ◽  
pp. 697-708
Author(s):  
Andreas Geiges ◽  
Alexander Nauels ◽  
Paola Yanguas Parra ◽  
Marina Andrijevic ◽  
William Hare ◽  
...  

Abstract. Current global mitigation ambition up to 2030 under the Paris Agreement, reflected in the National Determined Contributions (NDCs), is insufficient to achieve the agreement's 1.5 ∘C long-term temperature limit. As governments are preparing new and updated NDCs for 2020, the question as to how much collective improvement is achieved is a pivotal one for the credibility of the international climate regime. The recent Special Report on Global Warming of 1.5 ∘C by the Intergovernmental Panel on Climate Change has assessed a wide range of scenarios that achieve the 1.5 ∘C limit. Those pathways are characterised by a substantial increase in near-term action and total greenhouse gas (GHG) emission levels about 50 % lower than what is implied by current NDCs. Here we assess the outcomes of different scenarios of NDC updating that fall short of achieving this 1.5 ∘C benchmark. We find that incremental improvements in reduction targets, even if achieved globally, are insufficient to align collective ambition with the goals of the Paris Agreement. We provide estimates for global mean temperature increase by 2100 for different incremental NDC update scenarios and illustrate climate impacts under those median scenarios for extreme temperature, long-term sea-level rise and economic damages for the most vulnerable countries. Under the assumption of maintaining ambition as reflected in current NDCs up to 2100 and beyond, we project a reduction in the gross domestic product (GDP) in tropical countries of around 60 % compared to a no-climate-change scenario and median long-term sea-level rise of close to 2 m in 2300. About half of these impacts can be avoided by limiting warming to 1.5 ∘C or below. Scenarios of more incremental NDC improvements do not lead to comparable reductions in climate impacts. An increase in aggregated NDC ambition of big emitters by 33 % in 2030 does not reduce presented climate impacts by more than about half compared to limiting warming to 1.5 ∘C. Our results underscore that a transformational increase in 2030 ambition is required to achieve the goals of the Paris Agreement and avoid the worst impacts of climate change.

2019 ◽  
Author(s):  
Andreas Geiges ◽  
Paola Yanguas Parra ◽  
Marina Andrijevic ◽  
William Hare ◽  
Alexander Nauels ◽  
...  

Abstract. Current global mitigation ambition as under the Paris Agreement as reflected in the National Determined Contributions (NDCs) up to 2030 is insufficient to achieve the Agreement's 1.5 °C long term temperature limit. As governments are preparing new and updated NDCs for 2020, the question as to how much collective improvement is achieved is a pivotal one for the credibility of the international climate regime. The recent Special Report of the Intergovernmental Panel of Climate Change on Global Warming of 1.5 °C has assessed a wide range of scenarios that achieve the 1.5 °C limit. Those pathways are characterized by a substantial increase in near-term action and total greenhouse gas (GHG) emission levels about 50 % lower than what is implied by current NDCs. Here we assess the outcomes of different scenarios of NDC updating that fall short of achieving this 1.5 °C benchmark. We find that incremental improvements in reduction targets even if achieved globally, are insufficient to align collective ambition with the goals of the Paris Agreement. We provide estimates for global mean temperature increase by 2100 for different incremental NDC update scenarios and illustrate climate impacts under those scenarios including for extreme temperature, long-term sea level rise and economic damages for the most vulnerable countries. Under the assumption of maintaining ambition as reflected in current NDCs up to 2100 and beyond, we project a reduction in the Gross Domestic Product (GDP) in tropical countries of about 50–60 % compared to a no-climate change scenario and long-term sea-level rise of close to 2 m in 2300. About half of these impacts can be avoided by limiting warming to 1.5 °C, or below. Scenarios of more incremental NDC improvements do not lead to comparable reductions in climate impacts. An increase in 2030 of the aggregated NDC ambition of big emitters by 33 % does not deliver more than about half the potential reduction in climate impacts compared to limiting warming to 1.5 °C. Our results underscore that a transformational increase in 2030 ambition is required to achieve the goals of the Paris Agreement and avoid the worst impacts of climate change.


2016 ◽  
Vol 113 (10) ◽  
pp. 2597-2602 ◽  
Author(s):  
Matthias Mengel ◽  
Anders Levermann ◽  
Katja Frieler ◽  
Alexander Robinson ◽  
Ben Marzeion ◽  
...  

Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28–56 cm, 37–77 cm, and 57–131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The “constrained extrapolation” approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections.


2020 ◽  
Author(s):  
Deniz Karaca

<p>The European Cooperation in Science and Technology (COST) has a very important role in fostering the establishment of scientific excellence in many fields such as: Geoscience, Planetary and Environment. Over the years, COST Actions have contributed to European competitiveness through their many contributions to standardisation bodies, the small to medium enterprises originating from COST networks and the transfer of results to the European industry.</p><p>A series of COST Actions in the field of Meteorology developed global data transfer standards on the basis of infra-networks in collaboration with the World Meteorological Organization advantaging the competitiveness of the industrial participation. Such achievements include harmonisation of UV-index, developing operational programmes, services, networks and phenological responses to climate on a Pan-European Scale and were recognised by the Intergovernmental Panel on Climate Change.  European Centre for Medium-Range Weather Forecasts (ECMWF) is another good example as a result of an Action through its evolution to become an independent intergovernmental organisation with its own structure and headquarters supported by 34 states.</p><p>The key findings of COST networks not only contribute to the atmospheric drivers on the impacts of the global change but also increase the understanding of the function of marine ecosystems and its response to climate change. A number of Actions in the field of marine science have developed observing system to integrate the dynamic response of sea-level variations to combine effects of various natural drivers into multi-criteria tools by bringing together oceanographers and meteorologists. These developments urged for an integrated implementation of technology in sea-level monitoring, and for further international agreements on data storage and exchange.</p><p>A wide range of disciplines, evaluating the complex interactions between the oceans and the global change, geosciences, natural resources management, environmental monitoring, biogeochemical cycles,  ecology, hydrology, natural disasters, water cycle have well undertaken through COST Action networks. The results were published in high impact journals, guidelines were represented in position papers leading to new research projects on a global scale.  Participation in COST leads to significant results and follow-up in terms of number of proposals submitted for collaborative research in Horizon 2020, with a striking success rate of 33% (the Horizon 2020 average is at 12.2%). By enabling researchers and innovators from all career levels to network, COST connects complementary funding schemes, facilitating the entry of promising young talents into these schemes.</p><p>COST is committed to reinforcing its role as the leading networking instrument in the European Research Area (ERA), while creating even higher tangible impact on society.</p>


2020 ◽  
Author(s):  
Rosanne Martyr-Koller ◽  
Tabea Lissner ◽  
Carl-Friedrich Schleussner

<p>Climate impacts increase with higher warming and evidence is mounting that impacts increase strongly above 1.5°C. Therefore, adaptation needs also rise substantially at higher warming levels. Further<strong>, </strong>limits to adaptation will be reached above 1.5°C and loss and damage will be inferred. Coastal Nature-based Solutions (NbS) have arisen as popular adaptation options, particularly for coastal developing economies and Small Island Developing States (SIDS), because of their lower overall costs compared to traditional grey infrastructure approaches such as seawalls and levees; their economic co-benefits through positive effects on sectors such as tourism and fisheries; and a broader desire to shift toward so-called blue economies. Two NbS of particular interest for coastal protection are: 1) coral reefs, which reduce coastal erosion and flooding through wave attenuation; and 2) mangroves, which provide protection from storms, tsunamis and coastal erosion. Although there is international enthusiasm to implement these solutions, there is limited understanding of the future viability of these ecosystems, particularly in their capacities as coastal adaptation service providers, in a warmer world.</p><p>In this presentation, we highlight how long and with how much coverage coral and mangrove ecosystems can provide coastal protection services for future climate scenarios, using air temperature and sea level rise as climate change indicators. A mathematical model for each ecosystem is developed, based on the physical parameters necessary for the sustainability of these ecosystems. We investigate the protective capabilities of each ecosystem under warming and sea level rise scenarios compatible with: below 1.5°C warming; below 2°C warming; warming based on current global commitments to carbon emissions reductions (3-3.5°C); and with no carbon mitigation (6°C). Results show what temperature and sea level rise values beyond which these ecosystems can no longer provide coastal protective services. These results have also been framed in a temporal window to show when these services may not be feasible, beyond which more costly adaptation measures and/or loss and damage may be incurred.</p>


2021 ◽  
Author(s):  
Patrick Keys ◽  
Matthew Keys

Story-based futures serve an important role in climate change scenario development. Stories are particularly useful in exploring sea level rise possibilities, since we know many coastal areas are specifically vulnerable to accelerating rises in sea level. This discrete change in coastline is different from most other climate change impacts, and offers a clear basis for scientifically-informed, future scenarios. We demonstrate this with a creative world-building effort set in Lagos, Nigeria, in the year 2199. Further, we employ story-based scenario development, and create a learning-oriented, web-based game that allows users to experience stories in an open-ended, text-based adventure style. This collaborative process blended scientific research, story-telling, and artistic co-creation to iteratively construct the game ‘Lagos2199’. The first use-case of Lagos2199 is documented herein, with corresponding survey results from the student users. This work has three core conclusions. First, the unique reality that sea level rise will literally re-draw maps can be leveraged as an entry-point for world-building and scenario development of the future. Second, such a scenario can be blended with storytelling, art, and music to create a multi-dimensional, immersive exploration of ecological and social change. Third, this kind of game experience can serve an important pedagogical role in climate change education. Providing the next generation of citizens with fluency in both climate change impacts and how society will interact with such impacts, is critical for providing adaptive capacity over the coming decades and centuries of accelerating global change.


2013 ◽  
Vol 27 (1) ◽  
pp. 81
Author(s):  
Ifan Ridlo Suhelm

Tidal inundation, flood and land subsidence are the problems faced by Semarang city related to climate change. Intergovernmental Panel on Climate Change (IPCC) predicted the increase of sea level rise 18-59 cm during 1990-2100 while the temperature increase 0,6°C to 4°C during the same period. The Semarang coastal city was highly vulnerable to sea level rise and it increased with two factors, topography and land subsidence. The purpose of this study was to map the adaptive capacity of coastal areas in the face of the threat of disasters caused by climate change. The parameters used are Network Number, Employee based educational background, Source Main Livelihoods, Health Facilities, and Infrastructure Road. Adaptive capacity of regions classified into 3 (three) classes, namely low, medium and high. The results of the study showed that most of the coastal area of Semarang have adaptive capacities ranging from low to moderate, while the village with low capacity totaling 58 villages (58.62%) of the total coastal district in the city of Semarang.


2021 ◽  
Author(s):  
Clara E Estrela Segrelles ◽  
Miguel Ángel Pérez Martín ◽  
Gabriel Gómez Martínez

<p>Sea level rise produced by climate change severely affects coastal ecosystems. The increase in the area below sea level facilitates the penetration of the marine wedge and causes an increase in soil salinity. Coastal wetlands are areas of great ecological importance due to the richness of flora and fauna that inhabit them. A change in salinity conditions could lead to a reduction or loss of habitat for the wetland biota. Based on RCP4.5 and RCP8.5 CMIP5 multimodel scenarios, in the Western Mediterranean coast, the sea level will rise 0.16 m in the short term (2026 - 2045) and 0.79 m in 2100. Also, high-end scenarios indicate that sea level will rise between 1.35 m and 1.92 m in the long term.</p><p>A sea level rise analysis has been developed in the coastal wetlands of Júcar River Basin District (JRBD). The results show that coastal wetlands are the mainly area affected in the JRBD, so the 90% of the area under the sea level are wetlands. L’Albufera de Valencia is the main wetland in this basin and, also the main wetland affected. It is an anthropized humid zone, regulated by users through gates to preserve the adequate water level for agricultural and environmental purposes such as rice cultivation around the lake and bird habitats conservation, especially in winter. The outcome of the study shows a significative increase in the area below the sea from 507 ha and 4.2 hm<sup>3</sup> of water volume at present to 3,244 ha that represents 42.6 hm<sup>3</sup> of water volume in the short term. In the long term, the area below the sea is 7,253 ha which means 118.4 hm<sup>3</sup> of water volume in the percentile 50 scenario and, in the worst extreme scenario, it is 13,896 ha that represents 289.7 hm<sup>3</sup> of water volume. This leads to a redefinition of the lake management levels as a climate change adaptation measure to prevent the lake salinization and severe impacts in the lake ecosystem. L’Albufera lake levels need to be increased in the next years to avoid the sea water penetration, related to the sea level rise. Thus, in the short term the lake levels must be increased around 0.16 m and, in the long term, L’Albufera levels must be increased around 0.8 m.</p>


2013 ◽  
Vol 26 (16) ◽  
pp. 5782-5809 ◽  
Author(s):  
Kirsten Zickfeld ◽  
Michael Eby ◽  
Andrew J. Weaver ◽  
Kaitlin Alexander ◽  
Elisabeth Crespin ◽  
...  

Abstract This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. Most EMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6–6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs for RCPs 4.5–8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination of CO2 emissions in all EMICs. Restoration of atmospheric CO2 from RCP to preindustrial levels over 100–1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to preindustrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2.


2020 ◽  
Author(s):  
Cornelius Schwarze ◽  
Thomas Jahr ◽  
Andreas Goepel ◽  
Valentin Kasburg ◽  
Nina Kukowski

<p>Longterm geophysical recordings of natural Earth’s parameters besides other signals also may contain past and ongoing temperature fluctuations, as they are occurring e.g. when groundwater moves or when climate changes. Similarly, repeated logs or continuous recordings reveal the amount of ongoing climate fluctuations. However, such thermal signals in the subsurface also may have other causes, e.g. groundwater motion or fluid infiltration after strong rainfall events. The Geodynamic Observatory Moxa of the Friedrich-Schiller University Jena, Germany, is an ideal test site for long-term monitoring of the subsurface temperature distribution in boreholes using optical fibre temperature-sensing, as it is equipped with a variety of complementary sensors.</p><p>A 100 m deep borehole on the ground of the Observatory, is equipped with an optical fibre and a water level gauge. Clearly shown in the records of the first five years of continuous recordings are seasonal temperature fluctuations. Seasonal fluctuations could be identified down to a depth of about 20 m and diurnal temperature signals down to 1.2 m. Precipitation events may influence subsurface temperature still in a depth as deep as 15 m. Besides these, temperature anomalies were detected at two depths, 20 m and 77 m below the surface. These anomalies most probably result from enhanced groundwater flow in aquifers. Recordings of deformation from laser strain meter systems installed in a gallery at Moxa, which are highly sensitive to pore pressure fluctuations, and measuring the physical properties during drilling the borehole, help to identify and quantify the causes of the observed  temperature fluctuations.</p><p>For more than 20 years variations of the Earth’s gravity field have been observed at the Observatory Moxa employing the superconducting gravimeter CD-034. Besides the free oscillations of the Earth and hydrological effects, the tides of the solid Earth are the strongest signals found in the time series. Tidal analysis of the main constituents leads to obtaining the indirect effect for all tidal waves which is mainly controlled by the loading effect of the oceans. Satellite altimetry revealed a mean global sea level rise of about 3.3 mm/a which may be caused amongst others mainly by ice melting processes in the polar regions. However, more detailed analyses and resulting global maps show that the sea level rise is not uniformly distributed over all oceans. This means that actual and future tidal water mass movements could vary regionally and even locally.  As a consequence, the tidal parameter controlled by the ocean loading effect could change over long-term observation periods and it should possibly be detectable as a trend or temporal variation of the tidal gravity parameters locally. Actually, a long-term change of the tidal parameters is observed for the main tidal waves like K1 and O1 in the diurnal and for M2 and K2 in the semi-diurnal frequency band. However, it is not clear if these changes can be correlated with sea level changes as observed from satellite data. On the other hand, surface and subsurface temperature fluctuations directly reveal the size of the thermal signal inherent to climate change.</p>


2012 ◽  
Vol 1 (33) ◽  
pp. 26
Author(s):  
James Houston

Design-flood elevations with associated exceedance probabilities are often determined for coastal projects. Rising sea level introduces another design consideration that needs to be combined with the design-flood level. However, most sea level projections do not have exceedance probabilities that can be used in conjunction with the design flood to obtain total flood elevations with exceedance probabilities. This paper shows how to combine design-flood elevations with sea level rise projections that have exceedance probabilities, such as those of the Intergovernmental Panel for Climate Change (Bindoff et al 2007) or Houston (2012a), to obtain total elevations at desired exceedance probabilities over particular intervals.


Sign in / Sign up

Export Citation Format

Share Document