scholarly journals ESD Ideas: The Peclet number is a centerstone of the orbital and millennial Pleistocene variability

2020 ◽  
Author(s):  
Mikhail Y. Verbitsky ◽  
Michel Crucifix

Abstract. We demonstrate here that a single physical phenomenon, specifically, a naturally changing balance between intensities of temperature advection and diffusion in the viscous ice media, may influence the entire spectrum of the Pleistocene variability from orbital to millennial time-scales.

2021 ◽  
Vol 12 (1) ◽  
pp. 63-67
Author(s):  
Mikhail Y. Verbitsky ◽  
Michel Crucifix

Abstract. We demonstrate here that a single physical phenomenon, specifically, a naturally changing balance between intensities of temperature advection and diffusion in the viscous ice media, may influence the entire spectrum of the Pleistocene variability from orbital to millennial timescales.


SPE Journal ◽  
2010 ◽  
Vol 16 (01) ◽  
pp. 65-77 ◽  
Author(s):  
Raman K. Jha ◽  
Steven L. Bryant ◽  
Larry W. Lake

Summary It is known that dispersion in porous media results from an interaction between convective spreading and diffusion. However, the nature and implications of these interactions are not well understood. Dispersion coefficients obtained from averaged cup-mixing concentration histories have contributions of convective spreading and diffusion lumped together. We decouple the contributions of convective spreading and diffusion in core-scale dispersion and systematically investigate interaction between the two in detail. We explain phenomena giving rise to important experimental observations such as Fickian behavior of core-scale dispersion and power-law dependence of dispersion coefficient on Péclet number. We track movement of a swarm of solute particles through a physically representative network model. A physically representative network model preserves the geometry and topology of the pore space and spatial correlation in flow properties. We developed deterministic rules to trace paths of solute particles through the network. These rules yield flow streamlines through the network comparable to those obtained from a full solution of Stokes’ equation. Paths of all solute particles are deterministically known in the absence of diffusion. Thus, we can explicitly investigate purely convective spreading by tracking the movement of solute particles on these streamlines. Then, we superimpose diffusion and study dispersion in terms of interaction between convective spreading and diffusion for a wide range of Péclet numbers. This approach invokes no arbitrary parameters, enabling a rigorous validation of the physical origin of core-scale dispersion. In this way, we obtain an unequivocal, quantitative assessment of the roles of convective spreading and diffusion in hydrodynamic dispersion in flow through porous media. Convective spreading has two components: stream splitting and velocity gradient in pore throats in the direction transverse to flow. We show that, if plug flow occurs in the pore throats (accounting only for stream splitting), all solute particles can encounter a wide range of independent velocities because of velocity differences between pore throats and randomness of pore structure. Consequently, plug flow leads to a purely convective spreading that is asymptotically Fickian. Diffusion superimposed on plug flow acts independently of convective spreading (in this case, only stream splitting), and, consequently, dispersion is simply the sum of convective spreading and diffusion. In plug flow, hydrodynamic dispersion varies linearly with the pore-scale Péclet number when diffusion is small in magnitude compared to convective spreading. For a more realistic parabolic velocity profile in pore throats, particles near the solid surface of the medium do not have independent velocities. Now, purely convective spreading (caused by a combination of stream splitting and variation in flow velocity in the transverse direction) is non-Fickian. When diffusion is nonzero, solute particles in the low-velocity region near the solid surface can move into the main flow stream. They subsequently undergo a wide range of independent velocities because of stream splitting, and, consequently, dispersion becomes asymptotically Fickian. In this case, dispersion is a result of an interaction between convection and diffusion. This interaction results in a weak nonlinear dependence of dispersion on Péclet number. The dispersion coefficients predicted by particle tracking through the network are in excellent agreement with the literature experimental data for a broad range of Péclet numbers. Thus, the essential phenomena giving rise to hydrodynamic dispersion observed in porous media are (1) stream splitting of the solute front at every pore, causing independence of particle velocities purely by convection; (2) velocity gradient in pore throats in the direction transverse to flow; and (3) diffusion. Taylor's dispersion in a capillary tube accounts only for the second and third of these phenomena, yielding a quadratic dependence of dispersion on Péclet number. Plug flow in the bonds of a physically representative network accounts only for the first and third phenomena, resulting in a linear dependence of dispersion on Péclet number. When all the three phenomena are accounted for, we can explain effectively the weak nonlinear dependence of dispersion on Péclet number.


2020 ◽  
Author(s):  
Nikos Theodoratos ◽  
James W. Kirchner

Abstract. We examine the influence of incision thresholds on topographic and scaling properties of landscapes that follow a landscape evolution model (LEM) with terms for stream-power incision, linear diffusion, and uniform uplift. Our analysis uses three main tools. First, we examine the graphical behavior of theoretical relationships between curvature and the steepness index (which depends on drainage area and slope). These relationships plot as straight lines for the case of steady-state landscapes that follow the LEM. These lines have slopes and intercepts that provide estimates of landscape characteristic scales. Such lines can be viewed as counterparts of slope–area relationships, which follow power laws in detachment-limited landscapes, but not in landscapes with diffusion. We illustrate the response of these curvature–steepness-index lines to changes in the values of parameters. Second, we define a Péclet number that quantifies the competition between incision and diffusion, while taking the incision threshold into account. We examine how this Péclet number captures the influence of the incision threshold on the degree of landscape dissection. Third, we characterize the influence of the incision threshold using a ratio between it and the steepness index. This ratio is a dimensionless number in the case of the LEM that we use, and reflects the fraction by which the incision rate is reduced due to the incision threshold; in this way, it quantifies the relative influence of the incision threshold across a landscape. These three tools can be used together to graphically illustrate how topography and process competition respond to incision thresholds.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 3190-3199 ◽  
Author(s):  
Seongho Baek ◽  
Jihye Choi ◽  
Seok Young Son ◽  
Junsuk Kim ◽  
Seongjun Hong ◽  
...  

A nanoelectrokinetic study reveals that the Peclet number determines the shape of preconcentrated analytes, as either plug or dumbbell shaped.


2021 ◽  
Vol 9 (6) ◽  
pp. 1545-1561
Author(s):  
Nikos Theodoratos ◽  
James W. Kirchner

Abstract. We examine the influence of incision thresholds on topographic and scaling properties of landscapes that follow a landscape evolution model (LEM) with terms for stream-power incision, linear diffusion, and uniform uplift. Our analysis uses three main tools. First, we examine the graphical behavior of theoretical relationships between curvature and the steepness index (which depends on drainage area and slope). These relationships plot as straight lines for the case of steady-state landscapes that follow the LEM. These lines have slopes and intercepts that provide estimates of landscape characteristic scales. Such lines can be viewed as counterparts of slope–area relationships, which follow power laws in detachment-limited landscapes but not in landscapes with diffusion. We illustrate the response of these curvature–steepness index lines to changes in the values of parameters. Second, we define a Péclet number that quantifies the competition between incision and diffusion, while taking the incision threshold into account. We examine how this Péclet number captures the influence of the incision threshold on the degree of landscape dissection. Third, we characterize the influence of the incision threshold using a ratio between it and the steepness index. This ratio is a dimensionless number in the case of the LEM that we use and reflects the fraction by which the incision rate is reduced due to the incision threshold; in this way, it quantifies the relative influence of the incision threshold across a landscape. These three tools can be used together to graphically illustrate how topography and process competition respond to incision thresholds.


2000 ◽  
Vol 42 (1-2) ◽  
pp. 319-324 ◽  
Author(s):  
H. Rubin ◽  
A. Rabideau

This study presents an approximate analytical model, which can be useful for the prediction and requirement of vertical barrier efficiencies. A previous study by the authors has indicated that a single dimensionless parameter determines the performance of a vertical barrier. This parameter is termed the barrier Peclet number. The evaluation of barrier performance concerns operation under steady state conditions, as well as estimates of unsteady state conditions and calculation of the time period requires arriving at steady state conditions. This study refers to high values of the barrier Peclet number. The modeling approach refers to the development of several types of boundary layers. Comparisons were made between simulation results of the present study and some analytical and numerical results. These comparisons indicate that the models developed in this study could be useful in the design and prediction of the performance of vertical barriers operating under conditions of high values of the barrier Peclet number.


1979 ◽  
Vol 44 (4) ◽  
pp. 1218-1238
Author(s):  
Arnošt Kimla ◽  
Jiří Míčka

The problem of convective diffusion toward the sphere in laminar flow around the sphere is solved by combination of the analytical and net methods for the region of Peclet number λ ≥ 1. The problem was also studied for very small values λ. Stability of the solution has been proved in relation to changes of the velocity profile.


1983 ◽  
Vol 48 (6) ◽  
pp. 1571-1578 ◽  
Author(s):  
Ondřej Wein

Theory has been formulated of a convective rotating spherical electrode in the creeping flow regime (Re → 0). The currently available boundary layer solution for Pe → ∞ has been confronted with an improved similarity description applicable in the whole range of the Peclet number.


Sign in / Sign up

Export Citation Format

Share Document