temperature advection
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 16)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
pp. 1-32

Abstract Anticyclonic anomaly over Ural, or Ural High (UH), has recently received much attention as a factor related to weather anomalies across Eurasia. Here we studied how UH affects the occurrence of cold wintertime episodes over Eastern Europe and Northern China. By employing three methods to identify UH, we found that a method based on the sea level pressure anomaly captures a stronger cooling signal over Eastern Europe and this method includes non-blocking cases associated with low-level anticyclones that do not affect the upper troposphere. However, under the occurrence of UH, a stronger cooling over Northern China is detected by a method based on 500-hPa geopotential height fields. Cold events over Eastern Europe typically occur when UH formation was associated with a Rossby wave breaking in the upper level. Our results show that the horizontal temperature advection plays an important role in formation of cold episodes both in Eastern Europe and Northern China. The advection is balanced by diabatic processes, which show an opposite sign to the temperature advection in both regions. Also adiabatic warming contributes to balancing the advection in Northern China. We find that the exact location of the positive SLP anomaly during UH is the most important factor controlling whether or not Eastern Europe or Northern China will experience a cold episode. If the positive SLP anomaly develops more northwest than usual, Eastern Europe will experience a cold episode. When the anomaly moves eastward, Northern China will be cold.


2021 ◽  
pp. 1-53
Author(s):  
Marianna Linz ◽  
Gang Chen

Abstract The non-normality of temperature probability distributions and the physics that drive it are important due to their relationships to the frequency of extreme warm and cold events. Here we use a conditional mean framework to explore how horizontal temperature advection and other physical processes work together to control the shape of daily temperature distributions during 1979-2019 in the ERA5 reanalysis for both JJA and DJF. We demonstrate that the temperature distribution in mid- and high- latitudes can largely be linearly explained by the conditional mean horizontal temperature advection with the simple treatment of other processes as a Newtonian relaxation with a spatially-variant relaxation time scale and equilibrium temperature. We analyze the role of different transient and stationary components of the horizontal temperature advection in affecting the shape of temperature distributions. The anomalous advection of the stationary temperature gradient has a dominant effect in influencing temperature variance, while both that term and the covariance between anomalous wind and anomalous temperature have significant effects on temperature skewness. While this simple method works well over most of the ocean, the advection-temperature relationship is more complicated over land. We classify land regions with different advection-temperature relationships under our framework, and find that for both seasons the aforementioned linear relationship can explain ~30% of land area, and can explain either the lower or the upper half of temperature distributions in an additional ~30% of land area. Identifying the regions where temperature advection explains shapes of temperature distributions well will help us gain more confidence in understanding the future change of temperature distributions and extreme events.


2021 ◽  
pp. 1-59
Author(s):  
Kevin M. Grise ◽  
Mitchell K. Kelleher

AbstractAn effective method to understand cloud processes and to assess the fidelity with which they are represented in climate models is the cloud controlling factor framework, in which cloud properties are linked with variations in large-scale dynamical and thermodynamical variables. This study examines how midlatitude cloud radiative effects (CRE) over oceans co-vary with four cloud controlling factors: mid-tropospheric vertical velocity, estimated inversion strength (EIS), near-surface temperature advection, and sea surface temperature (SST), and assesses their representation in CMIP6 models with respect to observations and CMIP5 models.CMIP5 and CMIP6 models overestimate the sensitivity of midlatitude CRE to perturbations in vertical velocity, and underestimate the sensitivity of midlatitude shortwave CRE to perturbations in EIS and temperature advection. The largest improvement in CMIP6 models is a reduced sensitivity of CRE to vertical velocity perturbations. As in CMIP5 models, many CMIP6 models simulate a shortwave cloud radiative warming effect associated with a poleward shift in the Southern Hemisphere (SH) midlatitude jet stream, an effect not present in observations. This bias arises because most models’ shortwave CRE are too sensitive to vertical velocity perturbations and not sensitive enough to EIS perturbations, and because most models overestimate the SST anomalies associated with SH jet shifts. The presence of this bias directly impacts the transient surface temperature response to increasing greenhouse gases over the Southern Ocean, but not the global-mean surface temperature. Instead, the models’ climate sensitivity is correlated with their shortwave CRE sensitivity to surface temperature advection perturbations near 40°S, with models with more realistic values of temperature advection sensitivity generally having higher climate sensitivity.


2021 ◽  
Vol 2 (2) ◽  
pp. 331-357
Author(s):  
Iris Thurnherr ◽  
Katharina Hartmuth ◽  
Lukas Jansing ◽  
Josué Gehring ◽  
Maxi Boettcher ◽  
...  

Abstract. Meridional atmospheric transport is an important process in the climate system and has implications for the availability of heat and moisture at high latitudes. Near-surface cold and warm temperature advection over the ocean in the context of extratropical cyclones additionally leads to important air–sea exchange. In this paper, we investigate the impact of these air–sea fluxes on the stable water isotope (SWI) composition of water vapour in the Southern Ocean's atmospheric boundary layer. SWIs serve as a tool to trace phase change processes involved in the atmospheric water cycle and, thus, provide important insight into moist atmospheric processes associated with extratropical cyclones. Here we combine a 3-month ship-based SWI measurement data set around Antarctica with a series of regional high-resolution numerical model simulations from the isotope-enabled numerical weather prediction model COSMOiso. We objectively identify atmospheric cold and warm temperature advection associated with the cold and warm sector of extratropical cyclones, respectively, based on the air–sea temperature difference applied to the measurement and the simulation data sets. A Lagrangian composite analysis of temperature advection based on the COSMOiso simulation data is compiled to identify the main processes affecting the observed variability of the isotopic signal in marine boundary layer water vapour in the region from 35 to 70∘ S. This analysis shows that the cold and warm sectors of extratropical cyclones are associated with contrasting SWI signals. Specifically, the measurements show that the median values of δ18O and δ2H in the atmospheric water vapour are 3.8 ‰ and 27.9 ‰ higher during warm than during cold advection. The median value of the second-order isotope variable deuterium excess d, which can be used as a measure of non-equilibrium processes during phase changes, is 6.4 ‰ lower during warm than during cold advection. These characteristic isotope signals during cold and warm advection reflect the opposite air–sea fluxes associated with these large-scale transport events. The trajectory-based analysis reveals that the SWI signals in the cold sector are mainly shaped by ocean evaporation. In the warm sector, the air masses experience a net loss of moisture due to dew deposition as they are advected over the relatively colder ocean, which leads to the observed low d. We show that additionally the formation of clouds and precipitation in moist adiabatically ascending warm air parcels can decrease d in boundary layer water vapour. These findings illustrate the highly variable isotopic composition in water vapour due to contrasting air–sea interactions during cold and warm advection, respectively, induced by the circulation associated with extratropical cyclones. SWIs can thus potentially be useful as tracers for meridional air advection and other characteristics associated with the dynamics of the storm tracks over interannual timescales.


2021 ◽  
Author(s):  
Almut Gaßmann

<p>Higher order upwind biased advection schemes are often used for potential temperature advection in dynamical cores of atmospheric models. The inherent diffusive and anti-diffusive fluxes are interpreted here as the effect of irreversible sub-gridscale dynamics. For those, total energy conservation and positive internal entropy production must be guaranteed. As a consequence of energy conservation, the pressure gradient term should be formulated in Exner pressure form. The presence of local antidiffusive fluxes in potential temperature advection schemes foils the validity of the second law of thermodynamics. Due to this failure, a spurious wind acceleration into the wrong direction is locally induced via the pressure gradient term. When correcting the advection scheme to be more entropically consistent, the spurious acceleration is avoided, but two side effects come to the fore: (i) the overall accuracy of the advection scheme decreases and (ii) the now purely diffusive fluxes become more discontinuous compared to the original ones, which leads to more sudden body forces in the momentum equation. Therefore the amplitudes of excited gravity waves from jets and fronts increase compared to the original formulation with inherent local antidiffusive fluxes.</p><p>The means used for supporting the argumentation line are theoretical arguments concerning total energy conservation and internal entropy production, pure advection tests, one-dimensional advection-dynamics interaction tests and evaluation of runs with a global atmospheric dry dynamical core.</p>


2021 ◽  
pp. 1-54
Author(s):  
Joseph P. Clark ◽  
Vivek Shenoy ◽  
Steven B. Feldstein ◽  
Sukyoung Lee ◽  
Michael Goss

AbstractThe wintertime (December – February) 1990 - 2016 Arctic surface air temperature (SAT) trend is examined using self-organizing maps (SOMs). The high dimensional SAT dataset is reduced into nine representative SOM patterns, with each pattern exhibiting a decorrelation time scale about 10 days and having about 85% of its variance coming from intraseasonal timescales. The trend in the frequency of occurrence of each SOM pattern is used to estimate the interdecadal Arctic winter warming trend associated with the SOM patterns. It is found that trends in the SOM patterns explain about one-half of the SAT trend in the Barents and Kara Seas, one-third of the SAT trend around Baffin Bay and two-thirds of the SAT trend in the Chukchi Sea. A composite calculation of each term in the thermodynamic energy equation for each SOM pattern shows that the SAT anomalies grow primarily through the advection of the climatological temperature by the anomalous wind. This implies that a substantial fraction of Arctic amplification is due to horizontal temperature advection that is driven by changes in the atmospheric circulation. An analysis of the surface energy budget indicates that the skin temperature anomalies as well as the trend, although very similar to that of the SAT, are produced primarily by downward longwave radiation.


2021 ◽  
Vol 12 (1) ◽  
pp. 63-67
Author(s):  
Mikhail Y. Verbitsky ◽  
Michel Crucifix

Abstract. We demonstrate here that a single physical phenomenon, specifically, a naturally changing balance between intensities of temperature advection and diffusion in the viscous ice media, may influence the entire spectrum of the Pleistocene variability from orbital to millennial timescales.


2020 ◽  
Vol 33 (22) ◽  
pp. 9629-9642
Author(s):  
Panxi Dai ◽  
Ji Nie

AbstractThis paper presents a global picture of the dynamic processes and synoptic characteristics of extratropical extreme precipitation events (EPEs), defined as annual maximum daily precipitation averaged over 7.5° × 7.5° regional boxes. Based on the quasigeostrophic omega equation, extreme precipitation can be decomposed into components forced by large-scale adiabatic disturbances and amplified by diabatic heating feedback. The spatial distribution of the diabatic feedback parameter is largely controlled by atmospheric precipitable water and captured by a simple model. Most spatial heterogeneities of EPEs in the middle and high latitudes are due to the spatial variations of large-scale adiabatic forcing. The adiabatic component includes the processes of vorticity advection, in which the synoptic vorticity advection by background wind dominates; temperature advection, in which the total meridional temperature advection by synoptic wind dominates; and boundary forcing. The synoptic patterns of EPEs in all extratropical regions can be classified into six clusters using the self-organizing map method: two clusters in low latitudes and four clusters in middle and high latitudes. Synoptic disturbances are characterized by strong pressure anomalies throughout the troposphere over the coastal regions and oceans and feature upper-level shortwave disturbances and a large westward tilt with height over land. Synoptic configurations favor moisture transport from ocean to land over coastal regions.


2020 ◽  
Vol 148 (11) ◽  
pp. 4641-4656
Author(s):  
Thomas R. Parish ◽  
Richard D. Clark ◽  
Todd D. Sikora

AbstractThe Great Plains low-level jet (LLJ) has long been associated with summertime nocturnal convection over the central Great Plains of the United States. Destabilization effects of the LLJ are examined using composite fields assembled from the North American Mesoscale Forecast System for June and July 2008–12. Of critical importance are the large isobaric temperature gradients that become established throughout the lowest 3 km of the atmosphere in response to the seasonal heating of the sloping Great Plains. Such temperature gradients provide thermal wind forcing throughout the lower atmosphere, resulting in the establishment of a background horizontal pressure gradient force at the level of the LLJ. The attendant background geostrophic wind is an essential ingredient for the development of a pronounced summertime LLJ. Inertial turning of the ageostrophic wind associated with LLJ provides a westerly wind component directed normal to the terrain-induced orientation of the isotherms. Hence, significant nocturnal low-level warm-air advection occurs, which promotes differential temperature advection within a vertical column of atmosphere between the level just above the LLJ and 500 hPa. Such differential temperature advection destabilizes the nighttime troposphere above the radiatively cooled near-surface layer on a recurring basis during warm weather months over much of the Great Plains and adjacent states to the east. This destabilization process reduces the convective inhibition of air parcels near the level of the LLJ and may be of significance in the development of elevated nocturnal convection. The 5 July 2015 case from the Plains Elevated Convection at Night field program is used to demonstrate this destabilization process.


Sign in / Sign up

Export Citation Format

Share Document