scholarly journals A new pattern of the moisture transport for precipitation related to the drastic decline in Arctic sea ice extent

2018 ◽  
Vol 9 (2) ◽  
pp. 611-625 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Raquel Nieto ◽  
Marta Vázquez ◽  
Luis Gimeno

Abstract. In this study we use the term moisture transport for precipitation for a target region as the moisture coming to this region from its major moisture sources resulting in precipitation over the target region (MTP). We have identified changes in the pattern of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains concurrent with the major sea ice decline that occurred in 2003. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion. The pattern is statistically significant and consistent with changes in the vertically integrated moisture fluxes and frequency of circulation types. The results of this paper also reveal that the assumed and partially documented enhanced poleward moisture transport from lower latitudes as a consequence of increased moisture from climate change seems to be less simple and constant than typically recognised in relation to enhanced Arctic precipitation throughout the year in the present climate.

2017 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Raquel Nieto ◽  
Marta Vázquez ◽  
Luis Gimeno

Abstract. We have identified the patterns of moisture transport for precipitation over the Arctic region, the Arctic Ocean, and its 13 main subdomains, which better fit with sea ice decline. For this purpose, we studied the different patterns of moisture transport for the case of high/low Arctic sea ice (ASI) extension linked to periods before/after the main change point (CP) in the extension of sea ice. The pattern consists of a general decrease in moisture transport in summer and enhanced moisture transport in autumn and early winter, with different contributions depending on the moisture source and ocean subregion. The pattern is not only statistically significant but also consistent with Eulerian fluxes diagnosis, changes in the frequency of circulation types, and known mechanisms of the effects of snowfall or rainfall on ice in the Arctic. The results of this paper also reveal that the assumed and partially documented enhanced poleward moisture transport from lower latitudes as a consequence of increased moisture from climate change seems to be less simple and constant than typically recognized in relation to enhanced Arctic precipitation throughout the year in the present climate.


2019 ◽  
Vol 10 (1) ◽  
pp. 121-133 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Raquel Nieto ◽  
Marta Vázquez ◽  
Luis Gimeno

Abstract. By considering the moisture transport for precipitation (MTP) for a target region to be the moisture that arrives in this region from its major moisture sources and which then results in precipitation in that region, we explore (i) whether the MTP from the main moisture sources for the Arctic region is linked with inter-annual fluctuations in the extent of Arctic sea ice superimposed on its decline and (ii) the role of extreme MTP events in the inter-daily change in the Arctic sea ice extent (SIE) when extreme MTP simultaneously arrives from the four main moisture regions that supply it. The results suggest (1) that ice melting at the scale of inter-annual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter and a decrease in spring and, (2) on a daily basis, extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer, and autumn; in these three seasons extreme humidity transport therefore contributes to Arctic sea ice melting. These patterns differ sharply from that linked to the decline on a long-range scale, especially in summer when the opposite trend applies, as ice melt is favoured by a decrease in moisture transport for this season at this scale.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tsubasa Kodaira ◽  
Takuji Waseda ◽  
Takehiko Nose ◽  
Jun Inoue

AbstractArctic sea ice is rapidly decreasing during the recent period of global warming. One of the significant factors of the Arctic sea ice loss is oceanic heat transport from lower latitudes. For months of sea ice formation, the variations in the sea surface temperature over the Pacific Arctic region were highly correlated with the Pacific Decadal Oscillation (PDO). However, the seasonal sea surface temperatures recorded their highest values in autumn 2018 when the PDO index was neutral. It is shown that the anomalous warm seawater was a rapid ocean response to the southerly winds associated with episodic atmospheric blocking over the Bering Sea in September 2018. This warm seawater was directly observed by the R/V Mirai Arctic Expedition in November 2018 to significantly delay the southward sea ice advance. If the atmospheric blocking forms during the PDO positive phase in the future, the annual maximum Arctic sea ice extent could be dramatically reduced.


2015 ◽  
Vol 112 (15) ◽  
pp. 4570-4575 ◽  
Author(s):  
Rong Zhang

Satellite observations reveal a substantial decline in September Arctic sea ice extent since 1979, which has played a leading role in the observed recent Arctic surface warming and has often been attributed, in large part, to the increase in greenhouse gases. However, the most rapid decline occurred during the recent global warming hiatus period. Previous studies are often focused on a single mechanism for changes and variations of summer Arctic sea ice extent, and many are based on short observational records. The key players for summer Arctic sea ice extent variability at multidecadal/centennial time scales and their contributions to the observed summer Arctic sea ice decline are not well understood. Here a multiple regression model is developed for the first time, to the author’s knowledge, to provide a framework to quantify the contributions of three key predictors (Atlantic/Pacific heat transport into the Arctic, and Arctic Dipole) to the internal low-frequency variability of Summer Arctic sea ice extent, using a 3,600-y-long control climate model simulation. The results suggest that changes in these key predictors could have contributed substantially to the observed summer Arctic sea ice decline. If the ocean heat transport into the Arctic were to weaken in the near future due to internal variability, there might be a hiatus in the decline of September Arctic sea ice. The modeling results also suggest that at multidecadal/centennial time scales, variations in the atmosphere heat transport across the Arctic Circle are forced by anticorrelated variations in the Atlantic heat transport into the Arctic.


2018 ◽  
Vol 12 (12) ◽  
pp. 3747-3757 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Xiao Cheng ◽  
Jiping Liu ◽  
Fengming Hui

Abstract. The Arctic sea ice extent throughout the melt season is closely associated with initial sea ice state in winter and spring. Sea ice leads are important sites of energy fluxes in the Arctic Ocean, which may play an important role in the evolution of Arctic sea ice. In this study, we examine the potential of sea ice leads as a predictor for summer Arctic sea ice extent forecast using a recently developed daily sea ice lead product retrieved from the Moderate-Resolution Imaging Spectroradiometer (MODIS). Our results show that July pan-Arctic sea ice extent can be predicted from the area of sea ice leads integrated from midwinter to late spring, with a prediction error of 0.28 million km2 that is smaller than the standard deviation of the observed interannual variability. However, the predictive skills for August and September pan-Arctic sea ice extent are very low. When the area of sea ice leads integrated in the Atlantic and central and west Siberian sector of the Arctic is used, it has a significantly strong relationship (high predictability) with both July and August sea ice extent in the Atlantic and central and west Siberian sector of the Arctic. Thus, the realistic representation of sea ice leads (e.g., the areal coverage) in numerical prediction systems might improve the skill of forecast in the Arctic region.


2018 ◽  
Author(s):  
Yuanyuan Zhang ◽  
Xiao Cheng ◽  
Jiping Liu ◽  
Fengming Hui

Abstract. The Arctic sea ice extent throughout the melt season is closely associated with initial sea ice state in winter and spring. Sea ice leads are important sites of energy fluxes in the Arctic Ocean, which may play an important role in the evolution of Arctic sea ice. In this study, we examine the potential of sea ice leads as a predictor for seasonal Arctic sea ice extent forecast using a recently developed daily sea ice leads product retrieved from Moderate-Resolution Imaging Spectroradiometer. Our results show that July pan-Arctic sea ice extent can be accurately predicted from the area of sea ice leads integrated from mid-winter to late spring. However, the predictive skills for August and September pan-Arctic sea ice extent are very low. When the area of sea ice leads integrated in the Atlantic and central and west Siberian sector of the Arctic is used, it has a significantly strong relationship (high predictability) with both July and August sea ice extent in the Atlantic and central and west Siberian sector of the Arctic. Thus, the realistic representation of sea ice leads (e.g., the areal coverage) in numerical prediction systems might improve the skill of forecast in the Arctic region.


2021 ◽  
Author(s):  
Tsubasa Kodaira ◽  
Takuji Waseda ◽  
Takehiko Nose ◽  
Jun Inoue

<p>Arctic sea ice is rapidly decreasing during the recent period of global warming. One of the significant factors of the Arctic sea ice loss is oceanic heat transport from lower latitudes. For months of sea ice formation, the variations in the sea surface temperature over the Pacific Arctic region were highly correlated with the Pacific Decadal Oscillation (PDO). However, the seasonal sea surface temperatures recorded their highest values in autumn 2018 when the PDO index was neutral. It is shown that the anomalous warm seawater was a rapid ocean response to the southerly winds associated with episodic atmospheric blocking over the Bering Sea in September 2018. This warm seawater was directly observed by the R/V Mirai Arctic Expedition in November 2018 to significantly delay the southward sea ice advance. If the atmospheric blocking forms during the PDO positive phase in the future, the annual maximum Arctic sea ice extent could be dramatically reduced.</p>


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 361
Author(s):  
Su-Bong Lee ◽  
Baek-Min Kim ◽  
Jinro Ukita ◽  
Joong-Bae Ahn

Reanalysis data are known to have relatively large uncertainties in the polar region than at lower latitudes. In this study, we used a single sea-ice model (Los Alamos’ CICE5) and three sets of reanalysis data to quantify the sensitivities of simulated Arctic sea ice area and volume to perturbed atmospheric forcings. The simulated sea ice area and thickness thus volume were clearly sensitive to the selection of atmospheric reanalysis data. Among the forcing variables, changes in radiative and sensible/latent heat fluxes caused significant amounts of sensitivities. Differences in sea-ice concentration and thickness were primarily caused by differences in downward shortwave and longwave radiations. 2-m air temperature also has a significant influence on year-to-year variability of the sea ice volume. Differences in precipitation affected the sea ice volume by causing changes in the insulation effect of snow-cover on sea ice. The diversity of sea ice extent and thickness responses due to uncertainties in atmospheric variables highlights the need to carefully evaluate reanalysis data over the Arctic region.


2011 ◽  
Vol 24 (24) ◽  
pp. 6573-6581 ◽  
Author(s):  
Salil Mahajan ◽  
Rong Zhang ◽  
Thomas L. Delworth

Abstract The simulated impact of the Atlantic meridional overturning circulation (AMOC) on the low-frequency variability of the Arctic surface air temperature (SAT) and sea ice extent is studied with a 1000-year-long segment of a control simulation of the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1. The simulated AMOC variations in the control simulation are found to be significantly anticorrelated with the Arctic sea ice extent anomalies and significantly correlated with the Arctic SAT anomalies on decadal time scales in the Atlantic sector of the Arctic. The maximum anticorrelation with the Arctic sea ice extent and the maximum correlation with the Arctic SAT occur when the AMOC index leads by one year. An intensification of the AMOC is associated with a sea ice decline in the Labrador, Greenland, and Barents Seas in the control simulation, with the largest change occurring in winter. The recent declining trend in the satellite-observed sea ice extent also shows a similar pattern in the Atlantic sector of the Arctic in the winter, suggesting the possibility of a role of the AMOC in the recent Arctic sea ice decline in addition to anthropogenic greenhouse-gas-induced warming. However, in the summer, the simulated sea ice response to the AMOC in the Pacific sector of the Arctic is much weaker than the observed declining trend, indicating a stronger role for other climate forcings or variability in the recently observed summer sea ice decline in the Chukchi, Beaufort, East Siberian, and Laptev Seas.


2018 ◽  
Author(s):  
Luis Gimeno-Sotelo ◽  
Raquel Nieto ◽  
Marta Vázquez ◽  
Luis Gimeno

Abstract. By considering the moisture transport for precipitation (MTP) for a target region to be the moisture that arrives in this region from its major moisture sources and which then results in precipitation in that region, we explore i) whether the MTP from the main moisture sources for the Arctic region is linked with interannual fluctuations in the extent of Arctic Sea ice superimposed on its decline and ii) the role of extreme MTP events in the inter-daily change of the Arctic Sea Ice Extent (SIE) when extreme MTP simultaneously arrives from the four main moisture regions that supply it. The results suggest 1) that ice-melting at the scale of interannual fluctuations against the trend is favoured by an increase in moisture transport in summer, autumn, and winter, and a decrease in spring and, 2) on a daily basis, extreme humidity transport increases the formation of ice in winter and decreases it in spring, summer and autumn; in these 3 seasons it therefore contributes to Arctic Sea Ice Melting. These patterns differ sharply from that linked to the decline, especially in summer when the opposite trend applies.


Sign in / Sign up

Export Citation Format

Share Document