circulation types
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 58)

H-INDEX

23
(FIVE YEARS 4)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 137
Author(s):  
Rudolf Brázdil ◽  
Pavel Zahradníček ◽  
Petr Dobrovolný ◽  
Jan Řehoř ◽  
Miroslav Trnka ◽  
...  

Thirty-year periods are treated in climatology as spans with relatively representative and stable climatic patterns, which can be used for calculating climate normals. Annual and seasonal series of circulation types were used to compare two 30-year sub-periods, 1961–1990 and 1991–2020, the second one being strongly influenced by recent global warming. This analysis was conducted according to the objective classification of circulation types and the climatic characteristics of sunshine duration, temperature, humidity, precipitation, and wind speed as calculated for the territory of the Czech Republic during the 1961–2020 period. For both sub-periods, their statistical characteristics were calculated, and the statistical significance of differences between them was evaluated. There was a statistically significant increase in the annual frequencies of anticyclonic circulation types and a significant decrease in cyclonic circulation types during 1991–2020 compared with 1961–1990. Generally, in both 30-year periods, significant differences in means, variability, characteristics of distribution, density functions, and linear trends appear for all climatic variables analysed except precipitation. This indicates that the recent 30-year “normal” period of 1991–2020, known to be influenced more by recent climate change, is by its climatic characteristics unrepresentative of the stable climatic patterns of previous 30-year periods.


2022 ◽  
Vol 8 (1) ◽  
pp. 33-51
Author(s):  
Chibuike Chiedozie Ibebuchi ◽  

<abstract> <p>The influence of large-scale circulation patterns on the track and formation of tropical cyclones (TCs) in the Mozambique Channel is investigated in this paper. The output of the hourly classification of circulation types (CTs), in Africa, south of the equator, using rotated principal component analysis on the T-mode matrix (variable is time series and observation is grid points) of sea level pressure (SLP) from ERA5 reanalysis from 2010 to 2019 was used to investigate the time development of the CTs at a sub-daily scale. The result showed that at specific seasons, certain CTs are dominant so that their features overlap with other CTs. CTs with synoptic features, such as enhanced precipitable water and cyclonic activity in the Mozambique Channel that can be favorable for the development of TC in the Channel were noted. The 2019 TC season in the Mozambique Channel characterized by TC Idai in March and TC Kenneth afterward in April were used in evaluating how the CTs designated to have TC characteristics played role in the formation and track of the TCs towards their maximum intensity. The results were discussed and it generally showed that large-scale circulation patterns can influence the formation and track of the TCs in the Mozambique Channel especially through (ⅰ) variations in the position and strength of the anticyclonic circulation at the western branch of the Mascarene high; (ⅱ) modulation of wind speed and wind direction; hence influencing convergence in the Channel; (ⅲ) and modulation of the intensity of cyclonic activity in the Channel that can influence large-scale convection.</p> </abstract>


Author(s):  
Pavel Zahradníček ◽  
Rudolf Brázdil ◽  
Jan Řehoř ◽  
Ondřej Lhotka ◽  
Petr Dobrovolný ◽  
...  

2021 ◽  
Vol 2 (4) ◽  
pp. 1263-1282
Author(s):  
Tiina Nygård ◽  
Michael Tjernström ◽  
Tuomas Naakka

Abstract. Thermodynamic profiles are affected by both the large-scale dynamics and the local processes, such as radiation, cloud formation and turbulence. Based on ERA5 reanalysis, radiosoundings and cloud cover observations from winters 2009–2018, this study demonstrates manifold impacts of large-scale circulation on temperature and specific humidity profiles in the circumpolar Arctic north of 65∘ N. Characteristic wintertime circulation types are allocated using self-organizing maps (SOMs). The study shows that influence of different large-scale flows must be viewed as a progressing set of processes: (1) horizontal advection of heat and moisture, driven by circulation, lead to so-called first-order effects on thermodynamic profiles and turbulent surface fluxes, and (2) the advection is followed by transformation of the air through various physical processes, causing second-order effects. An example of second-order effects is the associated cloud formation, which shifts the strongest radiative cooling from the surface to the cloud top. The temperature and specific humidity profiles are most sensitive to large-scale circulation over the Eurasian land west of 90∘ E and the Arctic Ocean sea ice, whereas impacts over North America and Greenland are more ambiguous. Eurasian land, between 90 and 140∘ E, occasionally receives warm and moist air from the northern North Atlantic, which, with the support of radiative impacts of clouds, weakens the otherwise strong temperature and specific humidity inversions. Altitudes of maximum temperature and specific humidity in a profile and their variability between the circulation types are good indicators of the depth of the layer impacted by surface–atmosphere processes interacting with the large-scale circulation. Different circulation types typically cause variations of a few hundred metres to this altitude, and the layer impacted is deepest over north-eastern Eurasia and North America.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2405
Author(s):  
Krzysztof Bartoszek ◽  
Alicja Baranowska ◽  
Łukasz Kukla ◽  
Barbara Skowera ◽  
Alicja Węgrzyn

Atmospheric drought is an extremely important issue on a global, regional and local scale, especially in the context of climate change. The aim of the study was to assess the spatiotemporal variation of atmospheric (meteorological) drought in agricultural areas of east-central Poland, represented by the Lublin Voivodeship (Lublin region) in 1971–2015. Average monthly air temperatures and monthly precipitation totals recorded over the 45-year period at 25 weather stations were used in the study. The assessment of spatiotemporal variation in atmospheric drought in the study area was based on calculations of the aridity index. The analysis showed an increase in the severity of atmospheric drought in the Lublin region, with intensification of this phenomenon in the last two decades, especially in the warmer half of the year (April, June–August). The main cause of drought in the Lublin region was identified as a statistically significant increase in air temperature (on average, from 0.4 °C to 0.7 °C/10 years in April, July and August, and from 0.2 °C to 0.5 °C/10 years in June) together with the absence of changes in precipitation in the warmer half of the year. This may be linked to some increase in the frequency of high-pressure circulation types, both non-directional and advection from the south. Due to the worsening problem of drought in Poland in recent years, especially in agriculture, there is a need for further research on this subject and for solutions aimed at optimizing agricultural use of the productive environment.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1545
Author(s):  
Ziwei Yi ◽  
Yaqiang Wang ◽  
Wencong Chen ◽  
Bin Guo ◽  
Bihui Zhang ◽  
...  

Sand and dust storms (SDSs) cause major disasters in northern China. They have serious impacts on human health, daily life, and industrial and agricultural production, in addition to threatening the regional ecological environment and social economy. Based on meteorological observational data and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 dataset for spring 2000–2021, we used the Lamb–Jenkinson circulation classification method to classify the three major areas influencing SDSs in northern China. We also used the k-means clustering method to classify the overall circulation pattern in northern China. Our results show that the circulation types favoring SDSs in the southern basin of Xinjiang are southwesterly winds (SW), cyclones (C), and anticyclones (A). The circulation types favoring SDSs in western Inner Mongolia and southern Mongolia are northwesterly winds (NW), northerly winds (N), cyclones (C), and anticyclones (A). The circulation types favoring SDSs in central Inner Mongolia are northwesterly winds (NW), northerly winds (N), southwesterly winds (SW), and anticyclones (A). The 500 hPa and surface circulation patterns in China can be divided into nine types. Among them, five dominant circulation patterns favor strong SDSs: a cold high-pressure region and cold front (T1), a Mongolian cyclone (T2), a mixed type of Mongolian cyclone and cold front (T3), a thermal depression and cold front (T5), and a cold front (T8). During 2000–2004, the T8 circulation pattern occurred most frequently as the main influencing circulation. From 2005 to 2010, the T3 and T8 circulation patterns dominated. Circulation patterns T1 and T3 dominated during 2011–2015 and 2016–2020, respectively. We analyzed the main circulation patterns for four SDS events occurring in 2021 by combining the Lamb–Jenkinson and k-means methods. The SDS events in 2021 were closest to the T3 circulation pattern and were mainly influenced by Mongolian cyclones and surface cold fronts. The main propagation paths were westerly and northwesterly.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1536
Author(s):  
Jan Řehoř ◽  
Rudolf Brázdil ◽  
Ondřej Lhotka ◽  
Miroslav Trnka ◽  
Jan Balek ◽  
...  

Many studies in Europe have investigated the relationship between climatological variables and circulation patterns expressed by various classifications of circulation types. This study provides new insights based on an analysis of precipitation in the western (Bohemia—BOH) and eastern (Moravia and Silesia—M&S) parts of the Czech Republic with respect to the subjective classification of the Czech Hydrometeorological Institute and objective classification based on the flow strength, flow direction, and vorticity during the 1961–2020 period. Circulation types are investigated in regard to their contributions to the total precipitation, mean daily precipitation totals, and precipitation probability (daily totals ≥ 1.0 mm). Types with a westerly airflow and a trough over Central Europe exhibit the highest proportions in precipitation totals. Types with a cyclone over Central Europe, especially combined with a northwestern (BOH) or northeastern (M&S) airflow, result in the highest daily mean totals and precipitation probability. Types with a southwestern airflow transport more precipitation to BOH, while those with a northeastern airflow transport more precipitation to M&S, with a slight seasonal shift in the gradient axis between winter and summer. Circulation types under both classifications are examined from the perspective of their precipitation representation in BOH and M&S and the differences between these two regions. In addition, the suitability of both classifications for precipitation analysis is investigated.


2021 ◽  
Vol 21 (21) ◽  
pp. 16593-16608
Author(s):  
Manu Anna Thomas ◽  
Abhay Devasthale ◽  
Tiina Nygård

Abstract. The transport and distribution of short-lived climate forcers in the Arctic are influenced by the prevailing atmospheric circulation patterns. Understanding the coupling between pollutant distribution and dominant atmospheric circulation types is therefore important, not least to understand the processes governing the local processing of pollutants in the Arctic, but also to test the fidelity of chemistry transport models to simulate the transport from the southerly latitudes. Here, we use a combination of satellite-based and reanalysis datasets spanning over 12 years (2007–2018) and investigate the concentrations of NO2, O3, CO and aerosols and their co-variability during eight different atmospheric circulation types in the spring season (March, April and May) over the Arctic. We carried out a self-organizing map analysis of mean sea level pressure to derive these circulation types. Although almost all pollutants investigated here show statistically significant sensitivity to the circulation types, NO2 exhibits the strongest sensitivity among them. The circulation types with low-pressure systems located over the northeast Atlantic show a clear enhancement of NO2 and aerosol optical depths (AODs) in the European Arctic. The O3 concentrations are, however, decreased. The free tropospheric CO is increased over the Arctic during such events. The circulation types with atmospheric blocking over Greenland and northern Scandinavia show the opposite signal in which the NO2 concentrations are decreased and AODs are smaller than the climatological values. The O3 concentrations are, however, increased, and the free tropospheric CO is decreased during such events. The study provides the most comprehensive assessment so far of the sensitivity of springtime pollutant distribution to the atmospheric circulation types in the Arctic and also provides an observational basis for the evaluation of chemistry transport models.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1287
Author(s):  
Chibuike Chiedozie Ibebuchi ◽  
Heiko Paeth

This study examines the relationship between variations of the Southern Annular Mode (SAM) and black carbon (BC) at 550 nm aerosol optical depth (AOD) in the Western Cape province (WC). Variations of the positive (negative) phase of the SAM are found to be related to regional circulation types (CTs) in southern Africa, associated with suppressed (enhanced) westerly wind over the WC through the southward (northward) migration of Southern Hemisphere mid-latitude cyclones. The CTs related to positive (negative) SAM anomalies induce stable (unstable) atmospheric conditions over the southwestern regions of the WC, especially during the austral winter and autumn seasons. Through the control of CTs, positive (negative) SAM phases tend to contribute to the build-up (dispersion and dilution) of BC in the study region because they imply dry (wet) conditions which favor the build-up (washing out) of pollutant particles in the atmosphere. Indeed, recent years with an above-average frequency of CTs related to positive (negative) SAM anomalies are associated with a high (low) BC AOD over southwesternmost Africa.


Author(s):  
Andrzej Araźny ◽  
Arkadiusz Bartczak ◽  
Rafał Maszewski ◽  
Michał Krzemiński

AbstractThis work presents the influence of atmospheric circulation on the occurrence of dry and wet periods in the central Polish region of Kujawy. The material on which the authors relied encompassed monthly totals of precipitation obtained from 10 weather stations in the period 1954–2018. Both dry and wet periods have been identified on the basis of monthly values of the Standardised Precipitation Index (SPI). Additionally, the calendar of circulation types over Central Poland was used to determine the atmospheric circulation indices: western (W), southern (S) and cyclonicity (C). The analyses have indicated that the region concerned experiences low precipitation totals in comparison with the rest of Poland. According to the circulation indices W, S and C, for Central Poland, the air mass advection from the West prevails over that from the East. Moreover, a slightly more frequent inflow of air from the South than from the North has been observed. The frequency of anticyclonic situations is higher than that of the cyclonic types in this part of Europe. Drought spells occurred in the study area at a clear dominance of anticyclonic circulation, with the inflow of air mostly from the North and with increased westerly circulation. On the other hand, the occurrence of wet periods was mainly influenced by cyclonic circulation during the advection of the masses from the South and West. Dry and wet periods accounted for 28% and 27% of the study period, respectively.


Sign in / Sign up

Export Citation Format

Share Document