scholarly journals Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents

2014 ◽  
Vol 5 (2) ◽  
pp. 849-900 ◽  
Author(s):  
T. Vetter ◽  
S. Huang ◽  
V. Aich ◽  
T. Yang ◽  
X. Wang ◽  
...  

Abstract. Climate change impacts on hydrological processes should be simulated for river basins using validated models and multiple climate scenarios in order to provide reliable results for stakeholders. In the last 10–15 years climate impact assessment was performed for many river basins worldwide using different climate scenarios and models. Nevertheless, the results are hardly comparable and do not allow to create a full picture of impacts and uncertainties. Therefore, a systematic intercomparison of impacts is suggested, which should be done for representative regions using state-of-the-art models. Our study is intended as a step in this direction. The impact assessment presented here was performed for three river basins on three continents: Rhine in Europe, Upper Niger in Africa and Upper Yellow in Asia. For that, climate scenarios from five GCMs and three hydrological models: HBV, SWIM and VIC, were used. Four "Representative Concentration Pathways" (RCPs) covering a range of emissions and land-use change projections were included. The objectives were to analyze and compare climate impacts on future trends considering three runoff quantiles: Q90, Q50 and Q10 and on seasonal water discharge, and to evaluate uncertainties from different sources. The results allow drawing some robust conclusions, but uncertainties are large and shared differently between sources in the studied basins. The robust results in terms of trend direction and slope and changes in seasonal dynamics could be found for the Rhine basin regardless which hydrological model or forcing GCM is used. For the Niger River scenarios from climate models are the largest uncertainty source, providing large discrepancies in precipitation, and therefore clear projections are difficult to do. For the Upper Yellow basin, both the hydrological models and climate models contribute to uncertainty in the impacts, though an increase in high flows in future is a robust outcome assured by all three hydrological models.

2015 ◽  
Vol 6 (1) ◽  
pp. 17-43 ◽  
Author(s):  
T. Vetter ◽  
S. Huang ◽  
V. Aich ◽  
T. Yang ◽  
X. Wang ◽  
...  

Abstract. Climate change impacts on hydrological processes should be simulated for river basins using validated models and multiple climate scenarios in order to provide reliable results for stakeholders. In the last 10–15 years, climate impact assessment has been performed for many river basins worldwide using different climate scenarios and models. However, their results are hardly comparable, and do not allow one to create a full picture of impacts and uncertainties. Therefore, a systematic intercomparison of impacts is suggested, which should be done for representative regions using state-of-the-art models. Only a few such studies have been available until now with the global-scale hydrological models, and our study is intended as a step in this direction by applying the regional-scale models. The impact assessment presented here was performed for three river basins on three continents: the Rhine in Europe, the Upper Niger in Africa and the Upper Yellow in Asia. For that, climate scenarios from five general circulation models (GCMs) and three hydrological models, HBV, SWIM and VIC, were used. Four representative concentration pathways (RCPs) covering a range of emissions and land-use change projections were included. The objectives were to analyze and compare climate impacts on future river discharge and to evaluate uncertainties from different sources. The results allow one to draw some robust conclusions, but uncertainties are large and shared differently between sources in the studied basins. Robust results in terms of trend direction and slope and changes in seasonal dynamics could be found for the Rhine basin regardless of which hydrological model or forcing GCM is used. For the Niger River, scenarios from climate models are the largest uncertainty source, providing large discrepancies in precipitation, and therefore clear projections are difficult to do. For the Upper Yellow basin, both the hydrological models and climate models contribute to uncertainty in the impacts, though an increase in high flows in the future is a robust outcome ensured by all three hydrological models.


2020 ◽  
Vol 163 (3) ◽  
pp. 1121-1141
Author(s):  
Valentina Krysanova ◽  
Fred F. Hattermann ◽  
Zbigniew W. Kundzewicz

AbstractThis paper introduces the Special Issue (SI) “How evaluation of hydrological models influences results of climate impact assessment.” The main objectives were as follows: (a) to test a comprehensive model calibration/validation procedure, consisting of five steps, for regional-scale hydrological models; (b) to evaluate performance of global-scale hydrological models; and (c) to reveal whether the calibration/validation methods and the model evaluation results influence climate impacts in terms of the magnitude of the change signal and the uncertainty range. Here, we shortly describe the river basins and large regions used as case studies; the hydrological models, data, and climate scenarios used in the studies; and the applied approaches for model evaluation and for analysis of projections for the future. After that, we summarize the main findings. The following general conclusions could be drawn. After successful comprehensive calibration and validation, the regional-scale models are more robust and their projections for the future differ from those of the model versions after the conventional calibration and validation. Therefore, climate impacts based on the former models are more trustworthy than those simulated by the latter models. Regarding the global-scale models, using only models with satisfactory or good performance on historical data and weighting them based on model evaluation results is a more reliable approach for impact assessment compared to the ensemble mean approach that is commonly used. The former method provides impact results with higher credibility and reduced spreads in comparison to the latter approach. The studies for this SI were performed in the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP).


2020 ◽  
Vol 163 (3) ◽  
pp. 1353-1377 ◽  
Author(s):  
Valentina Krysanova ◽  
Jamal Zaherpour ◽  
Iulii Didovets ◽  
Simon N. Gosling ◽  
Dieter Gerten ◽  
...  

AbstractImportance of evaluation of global hydrological models (gHMs) before doing climate impact assessment was underlined in several studies. The main objective of this study is to evaluate the performance of six gHMs in simulating observed discharge for a set of 57 large catchments applying common metrics with thresholds for the monthly and seasonal dynamics and summarize them estimating an aggregated index of model performance for each model in each basin. One model showed a good performance, and other five showed a weak or poor performance in most of the basins. In 15 catchments, evaluation results of all models were poor. The model evaluation was supplemented by climate impact assessment for a subset of 12 representative catchments using (1) usual ensemble mean approach and (2) weighted mean approach based on model performance, and the outcomes were compared. The comparison of impacts in terms of mean monthly and mean annual discharges using two approaches has shown that in four basins, differences were negligible or small, and in eight catchments, differences in mean monthly, mean annual discharge or both were moderate to large. The spreads were notably decreased in most cases when the second method was applied. It can be concluded that for improving credibility of projections, the model evaluation and application of the weighted mean approach could be recommended, especially if the mean monthly (seasonal) impacts are of interest, whereas the ensemble mean approach could be applied for projecting the mean annual changes. The calibration of gHMs could improve their performance and, consequently, the credibility of projections.


Author(s):  
Aideen Maria Foley

Purpose Climate data, including historical climate observations and climate model outputs, are often used in climate impact assessments, to explore potential climate futures. However, characteristics often associated with “islandness”, such as smallness, land boundedness and isolation, may mean that climate impact assessment methods applied at broader scales cannot simply be downscaled to island settings. This paper aims to discuss information needs and the limitations of climate models and datasets in the context of small islands and explores how such challenges might be addressed. Design/methodology/approach Reviewing existing literature, this paper explores challenges of islandness in top-down, model-led climate impact assessment and bottom-up, vulnerability-led approaches. It examines how alternative forms of knowledge production can play a role in validating models and in guiding adaptation actions at the local level and highlights decision-making techniques that can support adaptation even when data is uncertain. Findings Small island topography is often too detailed for global or even regional climate models to resolve, but equally, local meteorological station data may be absent or uncertain, particularly in island peripheries. However, rather than viewing the issue as decision-making with big data at the regional/global scale versus with little or no data at the small island scale, a more productive discourse can emerge by conceptualising strategies of decision-making with unconventional types of data. Originality/value This paper provides a critical overview and synthesis of issues relating to climate models, data sets and impact assessment methods as they pertain to islands, which can benefit decision makers and other end-users of climate data in island communities.


2021 ◽  
Vol 6 (3) ◽  
pp. 306-320 ◽  
Author(s):  
Juliane Wright ◽  
Johannes Flacke ◽  
Jörg Peter Schmitt ◽  
Jürgen Schultze ◽  
Stefan Greiving

The consensus nowadays is that there is a need to adapt to increasingly occurring climate impacts by means of adaptation plans. However, only a minority of European cities has an approved climate adaptation plan by now. To support stakeholder dialogue and decision-making processes in climate adaptation planning, a detailed spatial information and evidence base in terms of a climate impact assessment is needed. This article aims to compare the climate impact assessment done in the context of two regional climate change adaptation planning processes in a Dutch and a German region. To do so, a comparison of guidelines and handbooks, methodological approaches, available data, and resulting maps and products is conducted. Similarities and differences between the two approaches with a particular focus on the input and output of such analysis are identified and both processes are assessed using a set of previously defined quality criteria. Both studies apply a similar conceptualisation of climate impacts and focus strongly on issues concerning their visualisation and communication. At the same time, the methods of how climate impacts are calculated and mapped are quite different. The discussion and conclusion section highlights the need to systematically consider climatic and socio-economic changes when carrying out a climate impact assessment, to focus on a strong visualisation of results for different stakeholder groups, and to link the results to planning processes and especially funding opportunities.


2021 ◽  
Author(s):  
Thedini Asali Peiris ◽  
Petra Döll

<p>Unlike global climate models, hydrological models cannot simulate the feedbacks among atmospheric processes, vegetation, water, and energy exchange at the land surface. This severely limits their ability to quantify the impact of climate change and the concurrent increase of atmospheric CO<sub>2</sub> concentrations on evapotranspiration and thus runoff. Hydrological models generally calculate actual evapotranspiration as a fraction of potential evapotranspiration (PET), which is computed as a function of temperature and net radiation and sometimes of humidity and wind speed. Almost no hydrological model takes into account that PET changes because the vegetation responds to changing CO<sub>2</sub> and climate. This active vegetation response consists of three components. With higher CO<sub>2</sub> concentrations, 1) plant stomata close, reducing transpiration (physiological effect) and 2) plants may grow better, with more leaves, increasing transpiration (structural effect), while 3) climatic changes lead to changes in plants growth and even biome shifts, changing evapotranspiration. Global climate models, which include dynamic vegetation models, simulate all these processes, albeit with a high uncertainty, and take into account the feedbacks to the atmosphere.</p><p>Milly and Dunne (2016) (MD) found that in the case of RCP8.5 the change of PET (computed using the Penman-Monteith equation) between 1981- 2000 and 2081-2100 is much higher than the change of non-water-stressed evapotranspiration (NWSET) computed by an ensemble of global climate models. This overestimation is partially due to the neglect of active vegetation response and partially due to the neglected feedbacks between the atmosphere and the land surface.</p><p>The objective of this paper is to present a simple approach for hydrological models that enables them to mimic the effect of active vegetation on potential evapotranspiration under climate change, thus improving computation of freshwater-related climate change hazards by hydrological models. MD proposed an alternative approach to estimate changes in PET for impact studies that is only a function of the changes in energy and not of temperature and achieves a good fit to the ensemble mean change of evapotranspiration computed by the ensemble of global climate models in months and grid cells without water stress. We developed an implementation of the MD idea for hydrological models using the Priestley-Taylor equation (PET-PT) to estimate PET as a function of net radiation and temperature. With PET-PT, an increasing temperature trend leads to strong increases in PET. Our proposed methodology (PET-MD) helps to remove this effect, retaining the impact of temperature on PET but not on long-term PET change.</p><p>We implemented the PET-MD approach in the global hydrological model WaterGAP2.2d. and computed daily time series of PET between 1981 and 2099 using bias-adjusted climate data of four global climate models for RCP 8.5. We evaluated, computed PET-PT and PET-MD at the grid cell level and globally, comparing also to the results of the Milly-Dunne study. The global analysis suggests that the application of PET-MD reduces the PET change until the end of this century from 3.341 mm/day according to PET-PT to 3.087 mm/day (ensemble mean over the four global climate models).</p><p>Milly, P.C.D., Dunne K.A. (2016). DOI:10.1038/nclimate3046.</p>


Sign in / Sign up

Export Citation Format

Share Document