scholarly journals The National Eutrophication Survey: lake characteristics and historical nutrient concentrations

2018 ◽  
Vol 10 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Joseph Stachelek ◽  
Chanse Ford ◽  
Dustin Kincaid ◽  
Katelyn King ◽  
Heather Miller ◽  
...  

Abstract. Historical ecological surveys serve as a baseline and provide context for contemporary research, yet many of these records are not preserved in a way that ensures their long-term usability. The National Eutrophication Survey (NES) database is currently only available as scans of the original reports (PDF files) with no embedded character information. This limits its searchability, machine readability, and the ability of current and future scientists to systematically evaluate its contents. The NES data were collected by the US Environmental Protection Agency between 1972 and 1975 as part of an effort to investigate eutrophication in freshwater lakes and reservoirs. Although several studies have manually transcribed small portions of the database in support of specific studies, there have been no systematic attempts to transcribe and preserve the database in its entirety. Here we use a combination of automated optical character recognition and manual quality assurance procedures to make these data available for analysis. The performance of the optical character recognition protocol was found to be linked to variation in the quality (clarity) of the original documents. For each of the four archival scanned reports, our quality assurance protocol found an error rate between 5.9 and 17 %. The goal of our approach was to strike a balance between efficiency and data quality by combining entry of data by hand with digital transcription technologies. The finished database contains information on the physical characteristics, hydrology, and water quality of about 800 lakes in the contiguous US (Stachelek et al., 2017, https://doi.org/10.5063/F1639MVD). Ultimately, this database could be combined with more recent studies to generate meta-analyses of water quality trends and spatial variation across the continental US.

2017 ◽  
Author(s):  
Joseph Stachelek ◽  
Chanse Ford ◽  
Dustin Kincaid ◽  
Katelyn King ◽  
Heather Miller ◽  
...  

Abstract. Historical ecological surveys serve as a baseline and provide context for contemporary research, yet many of these records are not preserved in a way that ensures their long-term usability. The National Eutrophication Survey database is currently only available as scans of the original reports (PDF files) with no embedded character information. This limits its searchability, machine readability, and the ability of current and future scientists to systematically evaluate its contents. These data were collected by the United States Environmental Protection Agency between 1972 and 1975 as part of an effort to investigate eutrophication in freshwater lakes and reservoirs. Although several studies have manually transcribed small portions of the database in support of specific studies, there have been no systematic attempts to transcribe and preserve the database in its entirety. Here we use a combination of automated optical character recognition and manual quality assurance procedures to make these data available for analysis. The performance of the optical character recognition protocol was found to be linked to variation in the quality (clarity) of the original documents. For each of the four archival scanned reports, our quality assurance protocol found an error rate between 5.9 and 17 %. The goal of our approach was to strike a balance between efficiency and data quality by combining hand-entry of data with digital transcription technologies. The finished database contains information on the physical characteristics, hydrology, and water quality of about 800 lakes in the contiguous United States (https://doi.org/10.5063/F1KK98R5). Ultimately, this database could be combined with more recent studies to generate metadata analyses of water quality trends and spatial variation across the continental United States.


1997 ◽  
Vol 9 (1-3) ◽  
pp. 58-77
Author(s):  
Vitaly Kliatskine ◽  
Eugene Shchepin ◽  
Gunnar Thorvaldsen ◽  
Konstantin Zingerman ◽  
Valery Lazarev

In principle, printed source material should be made machine-readable with systems for Optical Character Recognition, rather than being typed once more. Offthe-shelf commercial OCR programs tend, however, to be inadequate for lists with a complex layout. The tax assessment lists that assess most nineteenth century farms in Norway, constitute one example among a series of valuable sources which can only be interpreted successfully with specially designed OCR software. This paper considers the problems involved in the recognition of material with a complex table structure, outlining a new algorithmic model based on ‘linked hierarchies’. Within the scope of this model, a variety of tables and layouts can be described and recognized. The ‘linked hierarchies’ model has been implemented in the ‘CRIPT’ OCR software system, which successfully reads tables with a complex structure from several different historical sources.


2020 ◽  
Vol 2020 (1) ◽  
pp. 78-81
Author(s):  
Simone Zini ◽  
Simone Bianco ◽  
Raimondo Schettini

Rain removal from pictures taken under bad weather conditions is a challenging task that aims to improve the overall quality and visibility of a scene. The enhanced images usually constitute the input for subsequent Computer Vision tasks such as detection and classification. In this paper, we present a Convolutional Neural Network, based on the Pix2Pix model, for rain streaks removal from images, with specific interest in evaluating the results of the processing operation with respect to the Optical Character Recognition (OCR) task. In particular, we present a way to generate a rainy version of the Street View Text Dataset (R-SVTD) for "text detection and recognition" evaluation in bad weather conditions. Experimental results on this dataset show that our model is able to outperform the state of the art in terms of two commonly used image quality metrics, and that it is capable to improve the performances of an OCR model to detect and recognise text in the wild.


2014 ◽  
Vol 6 (1) ◽  
pp. 36-39
Author(s):  
Kevin Purwito

This paper describes about one of the many extension of Optical Character Recognition (OCR), that is Optical Music Recognition (OMR). OMR is used to recognize musical sheets into digital format, such as MIDI or MusicXML. There are many musical symbols that usually used in musical sheets and therefore needs to be recognized by OMR, such as staff; treble, bass, alto and tenor clef; sharp, flat and natural; beams, staccato, staccatissimo, dynamic, tenuto, marcato, stopped note, harmonic and fermata; notes; rests; ties and slurs; and also mordent and turn. OMR usually has four main processes, namely Preprocessing, Music Symbol Recognition, Musical Notation Reconstruction and Final Representation Construction. Each of those four main processes uses different methods and algorithms and each of those processes still needs further development and research. There are already many application that uses OMR to date, but none gives the perfect result. Therefore, besides the development and research for each OMR process, there is also a need to a development and research for combined recognizer, that combines the results from different OMR application to increase the final result’s accuracy. Index Terms—Music, optical character recognition, optical music recognition, musical symbol, image processing, combined recognizer  


Sign in / Sign up

Export Citation Format

Share Document