scholarly journals Measurements from the University of Colorado RAAVEN Uncrewed Aircraft System during ATOMIC

2022 ◽  
Vol 14 (1) ◽  
pp. 19-31
Author(s):  
Gijs de Boer ◽  
Steven Borenstein ◽  
Radiance Calmer ◽  
Christopher Cox ◽  
Michael Rhodes ◽  
...  

Abstract. Between 24 January and 15 February 2020, small uncrewed aircraft systems (sUASs) were deployed to Morgan Lewis (Barbados) as part of the Atlantic Tradewind Ocean–Atmosphere Mesoscale Interaction Campaign (ATOMIC), a sister project to the ElUcidating the RolE of Cloud-Circulation Coupling in ClimAte (EUREC4A) project. The observations from ATOMIC and EUREC4A were aimed at improving our understanding of trade-wind cumulus clouds and the environmental regimes supporting them and involved the deployment of a wide variety of observational assets, including aircraft, ships, surface-based systems, and profilers. The current paper describes ATOMIC observations obtained using the University of Colorado Boulder RAAVEN (Robust Autonomous Aerial Vehicle – Endurant Nimble) sUAS. This platform collected nearly 80 h of data throughout the lowest kilometer of the atmosphere, sampling the near-shore environment upwind from Barbados. Data from these platforms are publicly available through the National Oceanic and Atmospheric Administration's National Center for Environmental Intelligence (NCEI) archive. The primary DOI for the quality-controlled dataset described in this paper is https://doi.org/10.25921/jhnd-8e58 (de Boer et al., 2021).

2021 ◽  
Author(s):  
Gijs de Boer ◽  
Steven Borenstein ◽  
Radiance Calmer ◽  
Christopher Cox ◽  
Michael Rhodes ◽  
...  

Abstract. Between 24 January and 15 February 2020, small uncrewed aircraft systems (sUAS) were deployed to Morgan Lewis (Barbados) as part of the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC), a sister project to the ElUcidating the RolE of Cloud-Circulation Coupling in ClimAte (EUREC4A) project. The observations from ATOMIC and EUREC4A were aimed at improving our understanding of trade-wind cumulus clouds and the environmental regimes supporting them, and involved the deployment of a wide variety of observational assets, including aircraft, ships, surface-based systems and profilers. The current manuscript describes ATOMIC observations obtained using the University of Colorado Boulder RAAVEN sUAS. This platform collected nearly 80 hours of data throughout the lowest kilometer of the atmosphere, sampling the near-shore environment upwind from Barbados. Data from these platforms are publicly available through the National Oceanic and Atmospheric Administration’s National Center for Environmental Intelligence (NCEI) archive. The primary DOI for the quality-controlled dataset described in this manuscript is 10.25921/jhnd-8e58 (de Boer et al., 2021).


2021 ◽  
Author(s):  
Gijs de Boer ◽  
Radiance Calmer ◽  
Steven Borenstein ◽  
Christopher Choate ◽  
Michael Rhodes ◽  
...  

<p>During the 2020 Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) and ElUcidating the Role of Cloud- Circulation Coupling in ClimAte (EUREC4A) field campaigns, a team from the University of Colorado Boulder deployed the RAAVEN Remotely-Piloted Aircraft System (RPAS). The RAAVEN RPAS was equipped with the miniFlux measurement system to observe the marine boundary layer upwind of Morgan Lewis, Barbados.  Over the course of 23 days, the team completed 39 flights covering nearly 80 flight hours.  Flights were conducted in and just above the boundary layer at altitudes between 10 and 1000 m, with a focus on capturing regular thermodynamic and kinematic profiles of the lower atmosphere, along with statistics on vertical transport and spatial variability.  In this presentation, we will give initial details on the observed state of the lower atmosphere.  This includes information on the structure and internal variability of thermodynamic and kinematic properties, turbulence intensity, turbulent surface fluxes and their variability, and details on the structure of vertical velocities in the lower atmosphere.</p>


2012 ◽  
Vol 18 (1) ◽  
Author(s):  
Madhavan Parthasarathy ◽  
David Forlani ◽  
Arlen Meyers

In keeping with an emerging literature on the role of business education in the development of entrepreneurially-intentioned biotechnologists, this paper describes the actions and experiences of an entrepreneurship program that began in the late 1990’s. Along the way it illustrates how a business-centric approach can shift the budding entrepreneur’s perspective from a product to a market orientation when considering an innovation’s commercialization. While the developmental timeline and specific stages of the adoption process for biotechnology-based products vary from traditional consumer or industrial products, there many similarities, foremost is the notion that to be successful the market must perceive significant advantage to the new offering. Lastly, this paper provides thoughts on potentially profitable areas for program expansion and new foci, especially regarding the globalization of biotechnology innovation and international opportunities.


2017 ◽  
Author(s):  
◽  
Krisztina A. Pusok

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] While the role of firms has been acknowledged in existent research in political economy, it has played a rather peripheral role in the study of environmental politics, specifically in understanding environmental governance. In this dissertation, I seek to identify what the role of the private sector is in pushing the global environmental agenda. Specifically, I seek to offer alternative explanations for why firms choose to form these regimes, by drawing on existent comparative and international relations literatures focusing on political economy, governance, and the role of non-state actors. Additionally, I discuss the conditions determining firms to form private environmental regimes, as well as the economic and political consequences of this growing dynamic. Lastly, I investigate the mechanisms tying together different actors in terms of their environmental governance interactions.


2021 ◽  
Vol 13 (12) ◽  
pp. 5899-5914
Author(s):  
Martin Hagen ◽  
Florian Ewald ◽  
Silke Groß ◽  
Lothar Oswald ◽  
David A. Farrell ◽  
...  

Abstract. The German polarimetric C-band weather radar Poldirad (Polarization Diversity Radar) was deployed for the international field campaign EUREC4A (Elucidating the role of clouds–circulation coupling in climate) on the island of Barbados where it was operated from February until August 2020. Focus of the installation was monitoring clouds and precipitation in the trade wind region east of Barbados. Different scanning modes were used with a temporal sequence of 5 min and a maximum range of 375 km. In addition to built-in quality control performed by the radar signal processor, it was found that the copoloar correlation coefficient ρHV can be used to remove contamination of radar products by sea clutter. Radar images were available in real time for all campaign participants and aboard research aircraft. Examples of mesoscale precipitation patterns, rain rate accumulation, diurnal cycle, and vertical distribution are given to show the potential of the radar measurements for further studies on the life cycle of precipitating shallow cumulus clouds and other related aspects. Poldirad data from the EUREC4A campaign are available on the EUREC4A AERIS database: https://doi.org/10.25326/218 (Hagen et al., 2021a) for raw data and https://doi.org/10.25326/217 (Hagen et al., 2021b) for gridded data.


2021 ◽  
Author(s):  
Martin Hagen ◽  
Florian Ewald ◽  
Silke Groß ◽  
Lothar Oswald ◽  
David A. Farrell ◽  
...  

Abstract. The German polarimetric C-band weather radar Poldirad (Polarization Diversity Radar) was deployed for the international field campaign EUREC4A (ElUcidating the RolE of Cloud-Circulation Coupling in ClimAte) on the island of Barbados. Poldirad was operated on Barbados from February until August 2020. Focus of the installation was monitoring clouds and precipitation in the trade wind region east of Barbados. Different scanning modes were used with a temporal sequence of 5 minutes and a maximum range of 375 km. In addition to built-in quality control performed by the radar signal processor, it was found that the copoloar correlation coefficient ρHV can be used to remove contamination of radar products by sea clutter. Radar images were available in real-time for all campaign participants and onboard of research aircraft. Examples of mesoscale precipitation patterns, rain rate accumulation, diurnal cycle, and vertical distribution are given to show the potential of the radar measurements for further studies on the life cycle of precipitating shallow cumulus clouds and other related aspects. Poldirad data from the EUREC4A campaign are available on the EUREC4A AERIS database: https://doi.org/10.25326/218 (Hagen et al., 2021a) for raw data and https://doi.org/10.25326/217 (Hagen et al., 2021b) for gridded data.


Author(s):  
Mircea Fotino

A new 1-MeV transmission electron microscope (Model JEM-1000) was installed at the Department of Molecular, Cellular and Developmental Biology of the University of Colorado in Boulder during the summer and fall of 1972 under the sponsorship of the Division of Research Resources of the National Institutes of Health. The installation was completed in October, 1972. It is installed primarily for the study of biological materials without many of the limitations hitherto unavoidable in standard transmission electron microscopy. Only the technical characteristics of the installation are briefly reviewed here. A more detailed discussion of the experimental program under way is being published elsewhere.


2019 ◽  
Vol 12 (1) ◽  
pp. 7-20
Author(s):  
Péter Telek ◽  
Béla Illés ◽  
Christian Landschützer ◽  
Fabian Schenk ◽  
Flavien Massi

Nowadays, the Industry 4.0 concept affects every area of the industrial, economic, social and personal sectors. The most significant changings are the automation and the digitalization. This is also true for the material handling processes, where the handling systems use more and more automated machines; planning, operation and optimization of different logistic processes are based on many digital data collected from the material flow process. However, new methods and devices require new solutions which define new research directions. In this paper we describe the state of the art of the material handling researches and draw the role of the UMi-TWINN partner institutes in these fields. As a result of this H2020 EU project, scientific excellence of the University of Miskolc can be increased and new research activities will be started.


Sign in / Sign up

Export Citation Format

Share Document